Bay-shaped variations in the geomagnetic field that accompanied the catastrophic explosion of the Tonga volcano on January 15, 2022

Heading: 
1Chernogor, LF, Holub, MY
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(5):3-23
https://doi.org/10.15407/kfnt2023.05.003
Language: Ukrainian
Abstract: 

Tonga volcano is one of the five most powerful volcanoes in the world. The explosion of the Tonga volcano on January 15, 2022 was unique. It led to disturbances in the lithosphere, World Ocean, atmosphere, ionosphere, magnetosphere and all geophysical fields. A number of works have been devoted to the disturbance of the Earth’s magnetic field. The transport of magnetic field disturbances by atmospheric gravity waves and tsunamis, disturbances in magnetically conjugated regions due to acoustic resonance, the effect on the equatorial electrojet, etc., have been studied. The list of the variety of magnetic effects of the Tonga volcano does not end there. The purpose of this work is to describe the results of the analysis of global bay-disturbances in the geomagnetic field observed after the Tonga volcano explosion on January 15, 2022. The results of measurements of temporal variations in the level of the X-, Y-, and Z-components carried out by the INTERMAGNET world network of stationswere used as initial data.The analysis of magnetic data was preceded by an analysis of the state of space weather. A preliminary analysis of temporal variations in the level of the X-, Y-, and Z-components indicates that on the reference days these variations were smoother than on January 15, 2022. An analysis of time variations in the level of the X-, Y-, and Z-components of the geomagnetic field and a statistical analysis of the disturbance parameters showed the following. With the time delay, which varied depending on the distance to the volcano from several tens to 100...200 min, bay-disturbances of all components of the geomagnetic field were observed. The magnitude of the effect varied from ~10 to ~60 nT. The greatest disturbances occurred in the Y component. The delay time and duration of disturbances increased with increasing distance from the volcano, while their amplitude, on the contrary, decreased. The propagation speed of bay-disturbances was close to the speed of the blast wave. Bay-disturbances were weakly expressed or completely absent on the night side of the planet. It is substantiated that bay-disturbances are closely related to the occurrence of an ionospheric «hole» under the action of a blast wave from the volcano. The results of estimates of the bay-disturbance are in good agreement with the observation results.

Keywords: disturbance amplitude, disturbance duration, effect assessment, geomagnetic fieldbay-disturbance, ionospheric «hole», propagation speed, statistical analysis, time delay, time variations, Tonga volcano
References: 

1. Chernogor L. F. (2023). Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth - atmosphere - ionosphere - magnetosphere system. Space Sci. and Technol. 29(2). 54-77. [In Ukrainian]. https://doi.org/10.15407/knit2023.02.054

2. Chernogor L. F. (2023). Ionospheric total electron content variations caused by the Tonga volcano explosion of January 15, 2022. Space Sci. and Technol. 29(3). 67-87. [In Ukrainian]. https://doi.org/10.15407/knit2023.03.067

3. Chernogor L. F. (2023). Global variations in the geomagnetic field caused by the explosion of the volcano Tonga on January 15, 2022. Space Sci. and Technol. 29(4). https://doi.org/10.15407/knit2023.04.078

4. Chernogor L. F., Holub M. Yu. (2023). Large-scale geomagnetic field disturbances accompanied by the powerful explosion of the Tonga volcano on January 15, 2022. Visnyk of V. N. Karazin Kharkiv National University, series «Radio Physics and Electronics». 37. 33-48.

5. Chernogor L. F., Mylovanov Y. B. (2023). Reduction in the electron density produced by the Tonga volcano explosion on January 15, 2022. Kinematics and Phys. Celestial Bodies. 39(4). https://doi.org/10.15407/kfnt2023.04.034

6. Chernogor L. F., Mylovanov Y. B., Dorohov V. L. (2023). Ionospheric effects of the shock wave generated by the explosion of the Tonga volcano on January 15, 2022. Visnyk of V. N. Karazin Kharkiv National University, series «Radio Physics and Electronics». 2023. 37.

7. Chernogor L. F., Shevelev M. B. (2023). A statistical study of the explosive waves launched by the Tonga super-volcano on January 15, 2022. Space Sci. and Technol. 29(6) [In Ukrainian].

8. Aa E., Zhang S.-R., Erickson P. J., Vierinen J., Coster A. J., Goncharenko L. P., Spicher A., Rideout W. (2022). Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Geophys. Res. Lett. 20(7). e2022SW003101. https://doi.org/10.1029/2022SW003101

9. Adushkin V. V., Rybnov Y. S., Spivak A. A. (2022). Wave-related, electrical, and magnetic effects due to the January 15, 2022 catastrophic eruption of Hunga Tonga- Hunga Ha'apai volcano. J. Volcanolog. Seismol. 16(4). 251-263. https://doi.org/10.1134/S0742046322040029

10. Astafyeva E., Maletckii B., Mikesell T. D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 49(10). № e2022GL098827. https://doi.org/10.1029/2022GL098827

11. Burt S. (2022). Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Weather. Special Issue: The January 2022 eruption of Hunga Tonga-Hunga Ha'apai. 77(3). 76-81. https://doi.org/10.1002/wea.4182

12. Carvajal M., Seplveda I., Gubler A., Garreaud R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophys. Res. Lett. 49(6). e2022GL098153. https://doi.org/10.1029/2022GL098153

13. Chen C.-H., Zhang X., Sun Y.-Y., Wang F., Liu T.-C., Lin C.-Y., Gao Y., Lyu J., Jin X., Zhao X., Cheng X., Zhang P., Chen Q., Zhang D., Mao Z., Liu J.-Y.(2022). Individual wave propagations in ionosphere and troposphere triggered by the Hunga Tonga-Hunga Ha'apai Underwater volcano eruption on 15 January 2022. Remote Sensing. 14(9). 2179. https://doi.org/10.3390/rs14092179

14. Chernogor L. F. (2022). Effects of the Tonga volcano explosion on January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21. Kyiv, Ukraine. Book of Abstracts. 12-13. https://doi.org/10.3997/2214-4609.2022580141

15. Chernogor L. F. (2022). Electrical effects of the Tonga volcano unique explosionon January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 - 21. Kyiv, Ukraine. Book of Abstracts.79-80. https://doi.org/10.3997/2214-4609.2022580141

16. Chernogor L. F. (2022). Magnetospheric effects that accompanied the explosion of the Tonga volcano on January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 -21. Kyiv, Ukraine. Book of Abstracts. 81-82.

17. Chernogor L. F. (2022). Magnetic effects of the unique explosion of the Tonga Volcano. International Conference "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 -21. Kyiv, Ukraine. Book of Abstracts. 89-90.

18. Chernogor L. F. (2022). The Tonga super-volcano explosion as a subject of applied physics. International Scientific Conference "Electronics and Applied Physics", APHYS 2022. 18- 22 October. Kyiv, Ukraine. 130-131.

19. Chernogor L. F., Mylovanov Y. B., Dorohov V. L. (2022). Ionospheric effects accompanying the January 15, 2022 Tonga volcano explosion. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 - 21. Kyiv, Ukraine. Book of Abstracts. 83-84.

20. Chernogor L. F, Shevelev M. B. (2022). Statistical characteristics of atmosphericwaves, generated by the explosion of the Tonga volcano on January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 -21. Kyiv, Ukraine. Book of Abstracts. 85-86.

21. Harding B. J., Wu Y.-J. J., Alken P., Yamazaki Y., Triplett C. C., Immel T. J., Gasque L. C., Mende S. B., Xiong C. (2022). Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and swarm observations of extreme neutral winds and currents. Geophys. Res. Lett. 49(9). e2022GL098577. https://doi.org/10.1029/2022GL098577

22. Imamura F., Suppasri A., Arikawa T., Koshimura S., Satake K., Tanioka Y. (2022). Preliminary observations and impact in Japan of the tsunami caused by the Tonga volcanic eruption on January 15, 2022. Pure and Appl. Geophys.179. 1549-1560. https://doi.org/10.1007/s00024-022-03058-0

23. Iyemori T., Nishgioka M., Otsuka Y. et al. (2022). A confirmation of vertical acoustic resonance and field-aligned current eneration just after the 2022 Hunga Tonga Hunga Ha'apai volcanic eruption. Earth Planets Space. 74. 103. https://doi.org/10.1186/s40623-022-01653-y

24. Kubota T., Saito T., Nishida K. (2022). Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science. 377(6601). 91-94. https://doi.org/10.1126/science.abo4364

25. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Gorchakov G. I., Mishenin A. A., Perepelkin V. G., Bush G. A., Skorokhod A. I., Vinogradov Yu. A., Semutnikova E. G., Љepic J., Medvedev I. P., Gushchin R. A., Kopeikin V. M., Belikov I. B., Gubanova D. P., Karpov A. V., Tikhonov A. V. (2022). Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai volcano, its energy release and impact on aerosol concentrations and tsunami. Pure and Appl. Geophys.179. 1533-1548. https://doi.org/10.1007/s00024-022-03046-4

26. Le G., Liu G., Yizengaw E., Englert C. R. (2022). Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophys. Res. Lett. 49(11). e2022GL099002. https://doi.org/10.1029/2022GL099002

27. Lin J.-T., Rajesh P. K., Lin C. C. H., Chou M.-Y., Liu J.-Y., Yue J., Hsiao T.-Y., Tsai H.-F., Chao H.-M., Kung M.-M. (2022). Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the northern hemisphere after Hunga-Tonga volcano eruptions. Geophys. Res. Lett. 49(8). e2022GL098222. https://doi.org/10.1029/2022GL098222

28. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Prez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. 377(6601). 95-100. https://doi.org/10.1126/science.abo7063

29. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Prez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022).Supplementary Materials forAtmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. 377(6601). https://doi.org/10.1126/science.abo7063

30. Otsuka S. (2022). Visualizing Lamb waves from a volcanic eruption using meteorological satellite Himawari-8. Geophys. Res. Lett. 49(8). e2022GL098324. https://doi.org/10.1029/2022GL098324

31. Poli P.,Shapiro N. M. (2022). Rapid characterization of large volcanic eruptions: Measuring the impulse of the Hunga Tonga Ha'apai explosion from teleseismic waves. Geophys. Res. Lett. 49(8).e2022GL098123 https://doi.org/10.1029/2022GL098123

32. Ramrez-Herrera M. T., Coca O., Vargas-Espinosa V. (2022). Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha'apai volcano eruption, Tonga. Pure and Appl. Geophys.179. 1117-1137. https://doi.org/10.1007/s00024-022-03017-9

33. Schnepf N. R., Minami T.,Toh H., Nair M. C. (2022). Magnetic signatures of the 15 January 2022 Hunga Tonga-Hunga Ha'apai volcanic eruption. Geophys. Res. Lett. 49(10). e2022GL098454 https://doi.org/10.1029/2022GL098454

34. Soares G., Yamazaki Y., Matzka J. (2022). Localized geomagnetic disturbance due to ionospheric response to the Hunga Tonga eruption on January 15, 2022. Geophys. Res. Lett. https://doi.org/10.1002/essoar.10510482.1

35. Tanioka Y., Yamanaka Y., Nakagaki T.(2022). Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption. Earth, Planets and Space.74. 61. https://doi.org/10.1186/s40623-022-01614-5

36. Terry J. P., Goff J., Winspear N., Bongolan V. P., Fisher S. (2022). Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau. Geosci. Lett. 9. 24. https://doi.org/10.1186/s40562-022-00232-z

37. Themens D. R., Watson C., agar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., Jayachandran P. T. (2022). Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett. 49(7).e2022GL098158. https://doi.org/10.1029/2022GL098158

38. Yamazaki Y.,Soares G.,Matzka J. (2022). Geomagnetic detection of the atmospheric acoustic resonance at 3.8 mHz during the Hunga Tonga Eruption event on 15 January 2022. J. Geophys. Res.: Space Phys. 127(7). e2022JA030540. https://doi.org/10.1029/2022JA030540

39. Zhang S.-R., Vierinen J., Aa E., Goncharenko L. P., Erickson P. J., Rideout W., Coster A. J., Spicher A. (2022). 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front. Astron. and Space Sci. 9.871275. https://doi.org/10.3389/fspas.2022.871275