Physical effects from the Kyiv meteoroid. 2.
1Chernogor, LF 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(6):24-35 |
https://doi.org/10.15407/kfnt2023.06.024 |
Language: Ukrainian |
Abstract: Comprehensive modeling studies of the thermal, turbulent and plasma processes induced in all geospheres by the passage and explosion of the Kyiv meteoroid on April 19, 2023 are performed. Thermodynamic and plasma effects, as well as the effects of the plume and turbulence, accompanying the passage of the Kyiv meteoroid were estimated. It has been shown that the passage of the Celestial body led to the formation of a gas-dust plume. The heated trail of the meteoroid cooled for several seconds. A simplified one-dimensional model of plume motion in the vertical direction is considered. The acceleration and speed of the plume are estimated. It has been shown that the initial acceleration of the plume initially reached a maximum value of 117 m/s2 and lasted ~1 ms. Its speed increased from 0 to ~1 m/s, then gradually decreased to 0 m/s. At this speed, the height of the plume’s ascent practically did not increase. The products of the explosion, contained in the thermic, specks of dust and aerosols, further took part in the following three processes: a slow precipitation to the surface of the Earth, turbulent mixing with the ambient air, and the transport by the predominant winds around the globe. The effect of turbulence in the trail has been shown to be well-pronounced, while the effect of magnetic turbulence has been shown to be absent. The following basic parameters of the plasma in the trail have been estimated: the height dependences of the electron densities per unit length and per unit volume, their relaxation times, the particle collision frequencies, the plasma specific conductivities, and the electron temperature relaxation time. At the initial moment, the linear and volume electron densities in the trail have been shown to be equal to about 1017…1023 m–1 and 1017…1022 m–3, respectively, and the plasma specific conductivity to be equal to ~ 103 Ohm-1m-1. The role of the dusty plasma component was insignificant. |
Keywords: comprehensive simulation, Kyiv meteoroid, plasma effects, plume effects, thermodynamic effects, turbulence effects |
1. Artem'eva N. A., Shuvalov V. V. (2014). Atmospheric plume of the Chelyabinsk meteoroid. Dynamic Processes in Geospheres, Vol. 5: Geophysical Effects of the Chelyabinsk Meteoroid's Fall: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. Special Issue. Moscow: GEOS, 2014, 134-146 [in Russian].
2. Bronshten V. A. (1983). Physics of Meteor Phenomena. Springer. 416 p. https://doi.org/10.1007/978-94-009-7222-3
3. Bronshten V. A. (1983) A magneto-hydrodynamic mechanism for generating radio waves by bright fireballs. Solar System Res. 17(2), 70-74.
4. Bronshten V. A. (1993). The entry of the large meteoroids into the atmosphere. Solar System Res. 27(1), 102-121 [In Russian].
5. Bronshten V. A. (1993). About physical mechanism of the large meteor bodies quasi¬continuous fragmentation. Solar System Res. 27(3), 65-74 [In Russian].
6. Bronshten V. A. (1994). The way to use Grigor'yan theory for calculating giant meteoroids fragmentation. Solar System Res. 28(2), 118-122.
7. Bronshten V. A. (1995). Crushing and destruction of large meteoric bodies in the atmosphere. Solar System Res. 29(5), 450-458 [In Russian].
8. Brunelli B. E., Namgaladze A. A. (1988). Physics of the Ionosphere. Moscow: Nauka [in Russian].
9. Ginzburg B. L. (1960). Propagation of Electromagnetic Waves in Plasma. London: Addison Wesley.
10. Gor'kavyy N. N., Likharev D. S., Minnibayev D. N. (2014). Color variations of the aerosol plume of the Chelyabinsk bolide. The Chelyabinsk Meteorite - One Year on the Earth: Proc. All-Russian Sci. Conf., Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgo-Rodskij E. A. Chelyabinsk: Kamennyi Poyas, 118-123 [in Russian].
11. Gor'kavyy N. N., Taydakova T. A. (2014). Interaction of the Chelyabinsk bolide with the atmosphere. The Chelyabinsk Meteorite - One Year on the Earth: Proc. All-Russian Sci. Conf., Eds N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, E. A. Shajgo-Rodskij. Chelyabinsk: Kamennyi Poyas, 124-129 [in Russian].
12. Gor'kavyy N. N., Taydakova T. A., Provornikova Ye. A., et al. (2014). Aerosol plume of the Chelyabinsk bolide," The Chelyabinsk Meteorite - One Year on the Earth: Proc. All-Russian Sci. Conf., Eds N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, E. A. Shajgo-Rodskij. Chelyabinsk: Kamennyi Po¬yas, 130-135 [in Russian].
13. Grigor'yan S. S. (1979). On meteorites motion and fragmentation in planets atmospheres, Kosm. Issl., 17(6), 875-893 [In Russian].
14. Dynamic Processes in Geospheres. Issue 5: Geodesic Effects of the Fall of Chelyabinsk Meteoroid (Mosсow, Russia: GEOS) (2014). Ser.: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences, Special Issue [in Russian].
15. Emelyanenko V. V., Popova O. P., Chugaj N. N., Sheljakov M. A., Pahomov Ju. V., Shustov B. M., Shuvalov V. V., Birjukov E. E., Rybnov Ju. S., Marov M. Ja., Ryhlova L. V., Naroenkov S. A., Kartashova A. P., Harlamov V. A., Trubeckaja I. A. (2013) Astronomical and physical aspects of the Chelyabinsk event. (February 15, 2013). Solar Syst. Res. 47(4), 240-254. https://doi.org/10.1134/S0038094613040114
16. Catastrophic Events Caused by Cosmic Objects. (2008). Eds V. V. Adushkin, I. V. Nemchinov. Dordrecht: Springer, XI, 357 p.
17. The Chelyabinsk Meteorite - one year on the Earth: Proc. All-Russian Scientific Conference. (2014). Eds N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisni¬chen¬ko, A. V. Kocherov, E. A. Shajgorodskij. Chelyabinsk: Kamennyi poyas Publ., 694 p. [in Russian].
18. Stulov V. P., Mirskii V. N., Vislyi A. I. (1995) Aerodynamics of Bolides. M.: Nauka Publ., 240 p. [in Russian].
19. Chelyabinsk Superbolide. (2019). Eds Gorkavyi N., Dudorov A., Taskaev S. (Springer Nature Switzerland AG: Springer International Publishing). https://doi.org/10.1007/978-3-030-22986-3
20. Chernogor L. F. (2012). Physics and Ecology of Catastrophes: Monograph. Kharkiv: V. N. Karazin Kharkiv National University [In Russian].
21. Chernogor L. F. (2013). Plasma, electromagnetic, and acoustic effects of the «Chelyabinsk» meteorite. Inzhenernaja Fizika. (8), 23-40 [In Russian].
22. Chernogor L. F. (2013). Physical effects of the Chelyabinsk meteorite passage. DAN Ukraine, 10, 97-104. [In Russian].
23. Chernogor L. F. (2014). Basic effects of Chelyabinsk meteoroid fall: the results of physical-mathematic simulation. Proc. of All-Russian Sci. Conf. on Chelyabinsk meteorite - a year at the Earth. Chelyabinsk [In Russian].
24. Chernogor L. F. (2017). Atmospheric effects of the gas-dust plume of the Chelyabinsk meteoroid of 2013. Izvestiya, Atmospheric and Oceanic Physics, 53(3), 259-268. https://doi.org/10.1134/S0001433817030033
25. Chernogor L. F. (2018). Magnetic and ionospheric effects of a meteoroid plume. Geomagnetism and Aeronomy. 58(1), 119-126. https://doi.org/10.1134/S0016793218010048
26. Chernogor L. F. (2018). The physical effects of Romanian meteoroid. 1. Space Sci. and Technol. 24(1), 49-70. http://dx.doi.org/10.15407/knit2018.01.049 [In Russian]. https://doi.org/10.15407/knit2018.01.049
27. Chernogor L. F. (2018). The physical effects of Romanian meteoroid. 2. Space Science and Technology. 24(2), 18-35. [In Russian]. https://doi.org/10.15407/knit2018.02.018
28. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid: 1. Kinematics and Phys. Celestial Bodies. 35(4), 174-188. https://doi.org/10.3103/S0884591319040020
29. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid: 2. Kinematics and Phys. of Celestial Bodies. 2019. 35(5), 217-230. https://doi.org/10.3103/S0884591319050027
30. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid: 3. Kinematics and Phys. Celestial Bodies. 35(6), 271-285. https://doi.org/10.3103/S0884591319060023
31. Chernogor L. F. (2022). Physical effects from the Yushu meteoroid. 1. Kinematics and Phys. Celestial Bodies. 2022. 38(3), 20-46. https://doi.org/10.15407/kfnt2022.03.020
32. Chernogor L. F. (2023). Physical Effects of the Yushu Meteoroid: 2. Kinematics and Phys. Celestial Bodies. 39(3), 123-136. https://doi.org/10.3103/S0884591323030029
33. Chernogor L. F. (2023). Physical Effects of the Yushu Meteoroid: 3. Kinematics and Phys. Celestial Bodies. 39(3), 137-153. https://doi.org/10.3103/S0884591323030030
34. Chernogor L. F. (2023). Physical Effects from the Kyiv Meteoroid. 1. Kinematics and Phys. Celestial Bodies. 39(5), 24-53. https://doi.org/10.15407/kfnt2023.05.024
35. Chernogor L. F., Rozumenko V. T. (2013). The physical effects associated with Chelyabinsk meteorite's passage. Probl. Atomic Sci. and Technol. 86(4), 136-139.
36. Gorkavyi N. N., Taidakova T. A., Provornikova E. A. (2013). Aerosol plume after the Chelyabinsk bolide. Solar Syst. Res. 47(4), 275-279. https://doi.org/10.1134/S003809461304014X
37. Grigoryan S. S. (2013). Physical mechanism of Chelyabinsk superbolide explosion. Solar Syst. Res. 47(4), 268-274. https://doi.org/10.1134/S0038094613040151
38. Hills J. G., Goda M. P. (1993). The fragmentation of small asteroids in the atmosphere. Astron. J. 105(3), 1114-1144. https://doi.org/10.1086/116499
39. Hunten D. M., Turco R. P., Toon O. B., et al. (1980). Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. J. Atmos. Sci. 37(6), 1342-1357. https://doi.org/10.1175/1520-0469(1980)037<1342:SADPOM>2.0.CO;2
40. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. (2013). Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 342. 1069-1073. https://doi.org/10.1126/science.1242642
41. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. (2013). Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. 146. https://doi.org/10.1126/science.1242642
42. Schunk R. W., Nagy A. (2000). Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge: Cambridge University Press, 554 p. https://doi.org/10.1017/CBO9780511551772