Modification of inertia resulting from a Hubble-scale Casimir effect contradicts classical inertia

Heading: 
Dickmann, W, Dickmann, J
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(6):80-87
https://doi.org/10.15407/kfnt2023.06.058
Language: Ukrainian
Abstract: 

Inertia is one of the most vivid and at the same time puzzling physical properties of bodies. As an equivalence between inertial and gravitational mass in general relativity, there is still no experimentally confirmed quantum mechanical description of inertia. There is great hope for such a description, as it could possibly elucidate cosmological anomalies and provide the missing link between relativistic theories and quantum mechanics. In this work, we refute the explanation of inertia by the concept of Modification of inertia resulting from a Hubble-scale Casimir effect (MiHsC) or Quantized Inertia (QI).

Keywords: MiHsC, quantized inertia, quantum cosmology, Unruh effect
References: 

1. Agnese R., Anderson A. J., Asai M., Balakishiyeva D., Thakur R. B., Bauer D., Beaty J., Billard J., Borgland A., Bowles M., et al. (2014). Search for low-mass weakly interacting massive particles with superCDMS. Phys. Rev. Lett. 112(24). 241302. https://doi.org/10.1103/PhysRevLett.112.241302

2. Aguirre A., Schaye J., Quataert E. (2001). Problems for modified Newtonian dynamics in clusters and the Ly forest? Astrophys. J. 561(2). 550-558. https://doi.org/10.1086/323376

3. Aprile E., Alfonsi M., Arisaka K., Arneodo F., Balan C., Baudis L., Bauermeister B., Behrens A., Beltrame P., Bokeloh K., et al. (2012). Dark matter results from 225 live days of Xenon100 data. Phys. Rev. Lett. 109(18). 181301. https://doi.org/10.1103/PhysRevLett.109.181301

4. Baxter E. J., Sherwin B. D. (2021). Determining the Hubble constant without the sound horizon scale: measurements from CMB lensing. Mon. Notic. Roy. Astron. Soc. 501(2).1823-1835. https://doi.org/10.1093/mnras/staa3706

5. Einstein A. (1915). The field equations of gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.). 844-847.

6. Gin J., Luciano G. G. (2021). Modeling inertia through the interaction with quantum fluctuations. Results Phys. 28. 104543. https://doi.org/10.1016/j.rinp.2021.104543

7. Gin J., McCulloch M. (2016). Inertial mass from Unruh temperatures. Mod. Phys. Lett. A. 31(17). 1650107. https://doi.org/10.1142/S0217732316501078

8. Gundlach J., Schlamminger S., Spitzer C., Choi K.-Y., Woodahl B., Coy J., Fischbach E. (2007). Laboratory test of Newton's second law for small accelerations. Phys. Rev. Lett. 98(15). 150801. https://doi.org/10.1103/PhysRevLett.98.150801

9. Haisch B., Rueda A., Puthoff H. E. (1994). Inertia as a zero-point-field Lorentz force. Phys. Rev. A. 49(2). 678-694. https://doi.org/10.1103/PhysRevA.49.678

10. Hu J., Feng L., Zhang Z., Chin C. (2019). Quantum simulation of Unruh radiation. Nat. Phys. 15(8). 785-789. https://doi.org/10.1038/s41567-019-0537-1

11. McCulloch M. (2007). Modelling the Pioneer anomaly as modified inertia. Mon. Notic. Roy. Astron. Soc. 376(1). 338-342. https://doi.org/10.1111/j.1365-2966.2007.11433.x

12. McCulloch M. (2012). Testing quantised inertia on galactic scales. Astrophys. Space Sci. 342.575-578. https://doi.org/10.1007/s10509-012-1197-0

13. McCulloch M. (2013). Inertia from an asymmetric Casimir effect. Europhys. Lett. 101(5). 59001. 7. https://doi.org/10.1209/0295-5075/101/59001

14. Milgrom M. (1983). A modification of the Newtonian dynamics-implications for galaxies. Astrophys. J. 270. 371-383. https://doi.org/10.1086/161131

15. Newton I. (1687). Philosophiae Naturalis Principia Mathematica. Jussu Societatis Regiae ac typis Josephi Streater, London. 1031. https://doi.org/10.5479/sil.52126.39088015628399

16. Planck M. (1914). The theory of heat radiation. Blakiston's Son & Co., Philadelphia 225.

17. Renda M. (2019). A sceptical analysis of quantized inertia. Mon. Notic. Roy. Astron. Soc. 489(1). 881-885. https://doi.org/10.1093/mnras/stz2189

18. Rindler W. (1960). Hyperbolic motion in curved space time. Phys. Rev. 119(6). 2082-2089. https://doi.org/10.1103/PhysRev.119.2082

19. Rubin V. C. (1983). Dark matter in spiral galaxies. Sci. Amer. 248(6). 96-109. https://doi.org/10.1126/science.220.4604.1339

20. Rubin V. C., Ford W. K. Jr, Thonnard N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /r = 4 kpc/ to UGC 2885 /r = 122 kpc/. Astrophys. J. 238. 471-487. https://doi.org/10.1086/158003

21. Rueda A., Haisch B. (2005). Gravity and the quantum vacuum inertia hypothesis. Ann. Phys. 517(8). 479-498. https://doi.org/10.1002/andp.20055170802

22. Sanders R. (2003). Clusters of galaxies with modified newtonian dynamics. Mon. Notic. Roy. Astron. Soc. 342(3). 901-908. https://doi.org/10.1046/j.1365-8711.2003.06596.x

23. Shu L., Liu X., Cui K., Liu Z., Liu W. (2020). Fluctuation and inertia. Nucl. Phys. B. 950. 114873. https://doi.org/10.1016/j.nuclphysb.2019.114873

24. Sloane N., Plouffe S. (1995). The encyclopedia of integer sequences. Academic Press, San Diego, CA. 587.

25. Unruh W. G. (1976). Notes on black-hole evaporation. Phys. Rev. D. 14(4). 870-892. https://doi.org/10.1103/PhysRevD.14.870