Study of the dynamics of changes in the parameters of the Chandler pole oscillation in the interval 1975.0—2011.0

Zalivadny, NM, Khalyavina, LY
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(5):3-22
https://doi.org/10.15407/kfnt2024.05.003
Language: Ukrainian
Abstract: 

A structural analysis of the time series of pole coordinate changes (version C01 IERS) was carried out for the period 1975.0—2011.0 based on the nonlinear least squares method. Average estimates of the parameters of the main components of the pole movement — Chandler, annual, and semiannual waves — were obtained for this interval. The obtained values of periods T and amplitudes A of the main components are as follows: Chandler — T = 433.49 ± 0.22 days, A = 160 ± 3 mas; annual — T = 365.19 ± 0.37 days, A = 93 ± 5 mas; semiannual — T = 183.03 ± 0.34 days. A = 4 ± 2 mas. In the time series changes in pole coordinates were examined, focusing on the manifestation of the Chandler wobble. This study delved into the dynamic alterations of oscillation parameters (including amplitude, period, phase, quality factor). Changes in the parameters of the Chandler oscillation show their interdependence. The correlation coefficient between phase and period variations is +0.94, and a similar relationship is observed between phase and amplitude variations with a correlation coefficient of +0.88. It is shown that the phase change precedes the amplitude and period changes. This behavior of the parameters of the Chandler oscillation suggests that changes in the period and amplitude should be considered as a consequence of changes in the phase. It was observed that an increase in the Chandler wobbles amplitude correlates with a decrease in the attenuation decrement, showing a correlation coefficient of –0.98. These findings align with the statistical regularities articulated by Melchior, indicating: a) non-constancy of the Chandler wobble period over time; and b) proportional changes between period and amplitude. Thus, for the studied interval, preference should be given to the one-component complicated model of the Chandler pole movement with a variable period.

Keywords: Chandler wobble, Melchior’s laws, polar motion, quality factor
References: 

1. An Y., Ding H. (2022). Revisiting the period and quality factor of the Chandler wobble and its possible geomagnetic jerk excitation. Geodesy and Geodynamics. 13(5). 427-434.
https://doi.org/10.1016/j.geog.2022.02.002

2. Beutler G., Villiger A., Dach R., Verdun A., J@ggi A. (2020). Long polar motion series: Facts and insights. Adv. Space Res. 66. 2487-2515.
https://doi.org/10.1016/j.asr.2020.08.033

3. Bizouard C. (2020). Geophysical Modelling of the Polar Motion. Berlin, Boston: De Gruyter Studies in Mathematical Physics. 31. 366 p.
https://doi.org/10.1515/9783110298093

4. Bizouard C., Remus F., Lambert S. B., Seoane L., Gambis D. (2011). The Earth's variable Chandler wobble. Astron. and Astrophys. 526. A106.
https://doi.org/10.1051/0004-6361/201015894

5. Bizouard C., Seoane L. (2010). Atmospheric and oceanic forcing of the rapid polar motion. J. Geod. 84. 19-30.
https://doi.org/10.1007/s00190-009-0341-2

6. Brzeziski A., Nastula J. (2002). Oceanic excitation of the Chandler wobble. Adv. Space Res. 30(2). 195-200.
https://doi.org/10.1016/S0273-1177(02)00284-3

7. Carter W. E. (1982). Refinements of the polar motion frequency modulation hypothesis. J. Geophys. Res.: Solid Earth. 87(B8). 7025-1628.
https://doi.org/10.1029/JB087iB08p07025

8. Celaya M. A., Wahr J. M., Bryan F. O. (1999). Climate-driver polar motion. J. Geophys. Res.: Solid Earth. 104(B6). 12,813-12,829.
https://doi.org/10.1029/1999JB900016

9. Chandler S. C. (1891). On the variation of latitude. Astron J. 11. 249. 65-70.
https://doi.org/10.1086/101603

10. Chandler S. C. (1901). On the new component of the polar motion. Astron. J. 21. 490. 79-80.
https://doi.org/10.1086/103260

11. Chao B. F. (1983). Autoregressive harmonic analysis of the Earth's polar motion using homogeneous ILS data. J. Geophys. Res. 88(B12). 10,299-10,307.
https://doi.org/10.1029/JB088iB12p10299

12. Chen W., Shen W. (2010). New estimates of the inertia tensor and rotation of the triaxial nonrigid Earth. J. Geophys. Res. 115. B12419.
https://doi.org/10.1029/2009JB007094

13. Chen W., Shen W., Han J., Li J. (2009). Free wobble of the triaxial Earth: theory and comparisons with International Earth Rotation Service (IERS) data. Surv. Geophys. 30. 39-49.
https://doi.org/10.1007/s10712-009-9057-3

14. Chen J. L., Wilson C. R. (2005). Hidrological excitations of polar motion, 1993-2002. Geophys. J. Int. 160(3). 833-839.
https://doi.org/10.1111/j.1365-246X.2005.02522.x

15. Сolombo G., Shapiro I. (1968). Theoretical model for the Chandler wobble. Nature. 217. 156-157.
https://doi.org/10.1038/217156a0

16. Currie R. G. (1974). Period and Qw of the Chandler wobble. Geophys. J. Roy. Astr. Soc. 38. 179-185.
https://doi.org/10.1111/j.1365-246X.1974.tb04115.x

17. De-chun L., Yong-hong Z., (2004). Chandler period and Q derived by wavelet transform. Chinese J. Astron. and Astrophys. 4(3). 247-257.
https://doi.org/10.1088/1009-9271/4/3/247

18. De-chun L., Yong-hong Z., Xin-hao L. (2007). Comparison of wind contributions to Chandler wobble exitation. Chinese J. Astron. and Astrophys. 31(1). 57-65.
https://doi.org/10.1016/j.chinastron.2007.01.005

19. Dick S. J. (2000). Polar Motion: A historical overview on the occasion of the centennial of the international latitude service. Polar Motion: Historical and Scientific Pro¬blems. International Astronomical Union Colloquium 178. 1-24.
https://doi.org/10.1017/S0252921100061170

20. Dickman S. R. (1988). Theoretical investigation of the oceanic inverted barometer response. J. Geophys. Res.: Solid Earth. 93(B12). 14941-14946.
https://doi.org/10.1029/JB093iB12p14941

21. Fabert O., Schmidt M. (2003). Wavelet filtering with high time-freguency resolution and effective numerical implementation applied on polar motion. Artificial Sat. J. Planet. Geodes. 38(1). 3-13.

22. Fedorov E. P., Yatskiv Ya. S. (1965). The cause of the apparent "bifurcation" of the free nutation period. Sov. Astron. 8. 608-611.

23. Furuya M., Chao B. F. (1996) Estimation of period and Q of the Chandler wobble. Geophys. J. Int. 127(3). 693-702.
https://doi.org/10.1111/j.1365-246X.1996.tb04047.x

24. Gaposchkin E. M. (1972). Analysis of pole position from 1846 to 1970. Symp. Int. Astron. Union . 48. 19-32.
https://doi.org/10.1017/S0074180900098016

25. Gibert D., Holschneider M., Le Moul J.-L. (1998). Wavelet analysis of the Chandler wobble. J. Geophys. Res.: Solid Earth. 103(В11). 27069-27090.
https://doi.org/10.1029/98JB02527

26. Gibert D., Le Moul J.-L. (2008). Inversion of polar motion data: Chandler wobble, phase jumps, and geomagnetic jerks. J. Geophys. Res.: Solid Earth. 113(B10). B10405.
https://doi.org/10.1029/2008JB005700

27. Graber M. A. (1976). Polar motion spectra based upon Doppler, IPMS and BIH data. Geophys. J. Roy. Astr. Soc. 46. 75-85.
https://doi.org/10.1111/j.1365-246X.1976.tb01633.x

28. Gross R. S. (2000). The excitation of the Chandler wobble. Geоphys. Res. Lett. 27(15). 2329-2332.
https://doi.org/10.1029/2000GL011450

29. Gross R. S., Fukumori I., Menemenlis D. (2003). Atmospheric and oceanic excitation of the Earth's wobbles during 1980-2000. J. Geophys. Res. 108(B8). 2370-2386.
https://doi.org/10.1029/2002JB002143

30. Gross R. S., Vondrk J. (1999). Astrometric and cpace-geodetic observations of polar wander. Geophys. Res. Lett. 26(14). 2085-2088.
https://doi.org/10.1029/1999GL900422

31. Gubanov V. S. (1997). Generalized Least-Sguares Method. Theory and Applications to Astrometry. St.-Petersburg: Science. 318 p.

32. Guinot B. (1972). The Chandlerian wobble from 1900 to 1970. Astron. Astrophys. 19. 207-214.

33. Guo J., Greiner-Mai H., Ballani L., Jochmann H., Shum C.K. (2005). On the double-peak spectrum of the Chandler wobble. J. Geodesy. 78. 654-659.
https://doi.org/10.1007/s00190-004-0431-0

34. Guo Z., Shen W. B. (2020). Formulation of a triaxial three-layered Earth rotation: Theory and rotational normal mode solutions. J. Geophys. Res.: Solid Earth. 125. e2019JB018571. DOI: 10.1029/2019JB018571.
https://doi.org/10.1029/2019JB018571

35. Hpfner J. (2003). Chandler and annual wobbles based on space-geodetic measurements. J. Geodyn. 36(3). 369-381.
https://doi.org/10.1016/S0264-3707(03)00056-5

36. Hpfner J. (2004). Low-frequency variations, Chandler and annual wobbles of polar motion as observed over one century. Surv. Geophys. 25(1). 1-54.
https://doi.org/10.1023/B:GEOP.0000015345.88410.36

37. Jeffreys H. (1940). The variation of latitude. Mon. Notic. Roy. Astron. Soc. 100. 139-154. DOI: 10.1093/mnras/100.3.139.
https://doi.org/10.1093/mnras/100.3.139

38. Jeffreys H. (1968). The variation of latitude. Mon. Notic. Roy. Astron. Soc. 141. 255-268. DOI: 10.1093/mnras/141.2.255.
https://doi.org/10.1093/mnras/141.2.255

39. Jin X., Liu X., Guo J., Shen Y. (2021). Analysis and prediction of polar motion using MSSA method. Earth, Planets and Space. 73:147.
https://doi.org/10.1186/s40623-021-01477-2

40. Jochmann H. (2003). Period variations of the Chandler wobble. J. Geodesy. 77. 454-458.
https://doi.org/10.1007/s00190-003-0347-0

41. Kay S. M., Marple S. L. Jr. (1981). Spectrum analysis - a modern perspective. Proceedings of the IEEE. 69(11). 1380-1419.
https://doi.org/10.1109/PROC.1981.12184

42. Khalyavina L. Ya., Zalivadny N. M. (2018). Some results of the study long-term series of astrooptic observations in Poltava. Izv. GAO in Pulkovo. 225. 123-128.

43. Kosek W. (1995). Time variable band pass filter spectra of real and complex-valued polar motion series. Artif. Satell. Planet. Geod. 30(1). 283-299.

44. Kuehne J. W., Wilson C. R., Johnson S. (1996). Estimates of the Chandler wobble frequency and Q. J. Geophys.Res.: Solid Earth. 101(B6). 13,353-13,579.
https://doi.org/10.1029/96JB00663

45. Kstner F. (1888). Neue Methode zur Bestimmung der Aberrations-Constante nebst Untersuchungen ber die Vernderlichkeit der Polhhe. Beobachtungs-Ergebnisse der Kniglichen Sternwarte zu Berlin. 3. 1-59.

46. Lambeck K. (1980). The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge U.K.: Cambridge University Press. 449 p.
https://doi.org/10.1017/CBO9780511569579

47. Lambert S. B., Bizouard C., Dehant V. (2006). Rapid variations in polar notion during the 2005-2006 winter season. Geophys. Res. Lett. 33(13). L13303.
https://doi.org/10.1029/2006GL026422

48. Lenhardt H., Groten E. (1985). Chandler wobble parameters from BIH and ILS data. Manuscr. Geod. 10(4). 296-305.
https://doi.org/10.1007/BF03655140

49. Liu L., Hsu H., Grafarend E. W. (2007). Normal Morlet wavelet transform and its application to the Earth's polar motion. J. Geophys. Res.: Solid Earth. 112(8). B08401.
https://doi.org/10.1029/2006JB004895

50. Luo J., Chen W., Ray J., Li J. (2022). Short-term polar motion forecast based on the Holt-Winters algorithm and angular momenta of global surficial geophysical fluids. Surv. Geophys. 43. 1929-1945.
https://doi.org/10.1007/s10712-022-09733-0

51. Malkin Z., Gross R., McCarthy D., Brzeziski A., Capitaine N., Dehant V., Huang C., Schuh H., Vondrk J., Yatskiv Ya. (2019). On the eve of the 100th anniversary of IAU Commission 19/A2 " Rotation of the Earth". Proc. IAU Symp. 349. 324-331.
https://doi.org/10.1017/S1743921319000462

52. Malkin Z., Miller N.O. (2010).Chandler wobble: two more large phase jumps revealed. Earth, Planets and Space. 62(12). 943-947.
https://doi.org/10.5047/eps.2010.11.002

53. Marple S. L. Jr. (1987). Digital Spectral Analysis with Applications. New Jersey: Prentice-Hall. Inc. Englewood Gliffs. 492 p.

54. Mathews P. M., Herring T. A., Buffett B. A. (2002). Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior. J. Geofhys. Res.: Solid Earth. 107(B4). ETG3-1-ETG3-26.
https://doi.org/10.1029/2001JB000390

55. McCarthy D. D., Luzum B. J. (1996) Path of the mean rotational pole from 1899 to 1994. Geophys. J. Int. 125(2). 623-629.
https://doi.org/10.1111/j.1365-246X.1996.tb00024.x

56. Melchior P. J. (1957). Latitude variation. Physics and Chemistry of the Earth. Vol. 2. 212-216. IN13-IN14. 217-243.
https://doi.org/10.1016/0079-1946(57)90010-1

57. Miller N. O. (2011). Chandler wobble in variations of the Pulkovo latitude for 170 Years. Solar System Research. 45(4). 342-353.
https://doi.org/10.1134/S0038094611040058

58. Modiri S., Belda S., Heinkelmann R., Hoseini M., Ferrndiz J. M., Schuh H. (2018). Polar motion prediction using the combination of SSA and Copula-based analysis. Earth, Planets and Space. 70(1). 1-18.
https://doi.org/10.1186/s40623-018-0888-3

59. Moritz H., Mueller I. I. (1988). Earth Rotation: Theory and Observation. New York: The Ungar Publishing Company. 617 p.

60. Munk W. H., MacDonald G. J. F. (1960). The Rotation of the Earth: A Geophysical Discussion. Cambridge U. K.: Cambridge Univ. Press. 323 p.

61. Nastula J., Gross R. (2015). Chandler wobble parameters from SLR and GRACE. J. Geophys. Res.: Solid Earth. 120(6). 4474-4483.
https://doi.org/10.1002/2014JB011825

62. Nastula J., Gross R., Salstein D. A. (2012). Oceanic excitation of polar motion: Indentification of specific oceanic areas important for polar motion excitation. J. Geodyn. 62. 16-23.
https://doi.org/10.1016/j.jog.2012.01.002

63. Nastula J., Korsun A., Kolaczek B., Kosek W., Hozakowski W. (1993). Variations of the Chandler and annual wobbles of polar motion in 1846-1988 and their prediction. Manuscripta geodetica. 18(3). 131-136.
https://doi.org/10.1007/BF03655307

64. Nastula J., Wiska M., liwiska J., Salstein D. (2019). Hydrological signals in polar motion excitation - еvidence after fifteen years of the GRACE mission. J. Geodyn. 124. 119-132.
https://doi.org/10.1016/j.jog.2019.01.014

65. Nesterov V. V., Rykhlova L. V. (1970). On the Chandler motion of the pole. Sov. Astron. 14. 340-343.

66. Newcomb S. (1892). On the dynamics of the Earth's motions with respect to the periodic variations of latitude. Mon. Notic. Roy. Astr. Soc. 52. 336-341.
https://doi.org/10.1093/mnras/52.5.336a

67. Okubo S. (1982). Is the Chandler period variable? Geophys. J. Roy. Astr. Soc. 71(3). 629-646.
https://doi.org/10.1111/j.1365-246X.1982.tb02789.x

68. Ooe M. (1978). An optimal complex AR.MA model of the Chandler wobble. Geophys. J. Roy. Аstr. Soc. 53. 445-457.
https://doi.org/10.1111/j.1365-246X.1978.tb03752.x

69. Pines D., Shaham J. (1973). Seismic activity, polar tides and the Chandler wobble . Nature. 245. 77-81.
https://doi.org/10.1038/245077a0

70. Popiski W., Kozek W. (1995). The Fourier transform band pass filter and its application for polar motion analysis. Artif. Satell. Planetary. Geodesy. 30(1). 9-25.

71. Ron C., Vondrk J., Dill R., Chapanov Y. (2019). Combination of geo-magnetic jerks with updated ESMGFZ effective angular momentum functions for the modelling of polar motion excitation. Acta Geodyn. Geomater. 16(196). 359-363.
https://doi.org/10.13168/AGG.2019.0030

72. Schuh H., Nagel S., Seitz T. (2001). Linear drift and periodic variations observed in long time series of polar motion. J. Geodesy. 74 (10). 701-710.
https://doi.org/10.1007/s001900000133

73. Seitz F., Schmidt M. (2005). Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. J. Geophys. Res. 110. B11406.
https://doi.org/10.1029/2005JB003826

74. Shen Y., Guo J., Liu X., Kong Q., Guo L., Li W. (2018). Long-term prediction of polar motion using a combined SSA and ARMA model. J. Geodesy. 92 (3). 333-343.
https://doi.org/10.1007/s00190-017-1065-3

75. Smith M. L., Dahlen F. A. (1981). The period and Q of the Chandler wobble. Geophys. J. Roy. Аstr. Soc. 64 (1). 223-281.
https://doi.org/10.1111/j.1365-246X.1981.tb02667.x

76. Smylie D. E., Henderson G. A., Zuberi M. (2015). Modern observations of the effect earthquakes on the Chandler wobble. J. Geodyn. 83. 85-91.
https://doi.org/10.1016/j.jog.2014.09.012

77. Sugawa Ch. (1969). On the triaxiality of the Earth deduced from Chandler ellipse. Proc. Int. Latitude Obs. Mizusawa. 9. 191-211.

78. Vicente R. O., Currie R. G. (1976). Maximum entropy spectrum of long-period polar motion. Geophys. J Int. 46 (1). 67-73.
https://doi.org/10.1111/j.1365-246X.1976.tb01632.x

79. Vicente R. O., Wilson C. R. (1997). On the variability of the Chandler frequency. J. Geophys. Res.: Solid Earth. 102(B9). 20,439-20,445.
https://doi.org/10.1029/97JB01275

80. Vondrk J. (1985). Long-period behaviour of polar motion between 1900.0 and 1984.0 Annales Geophysicae. 3 (3). 351-356.

81. Vondrk J. (1999). Earth rotation parameters 1899.7-1992.0 after reanalysis within the Hipparcos frame. Surv. Geophys. 20(2). 169-195.
https://doi.org/10.1023/A:1006637700216

82. Vondrk J., Ron C., Chapanov Ya. (2017). New determination of period and quality factor of Chandler wobble, considering geophysical excitations. Adv. Space Res. 59(5). 1395-1407.
https://doi.org/10.1016/j.asr.2016.12.001

83. Wang G., Liu L., Su X., Liang X., Yan H., Tu Y., Li Z., Li W. (2016). Variable Chandler and annual wobbles in Earth's polar motion during 1900-2015. Surv. Geophys. 37(6). 1075-1093.
https://doi.org/10.1007/s10712-016-9384-0

84. Wilson C. R., Vicente R. O. (1990). Maximum likelihood estimates of polar motion parameters. Eds. D. D. McCarthy, W. E. Carter. Variations in Earth Rotation. Geophysical Monograph Series. vol. 59. Washington.: D.C. AGU. 151-155.
https://doi.org/10.1029/GM059p0151

85. Winska M., Nastula J., Salstein D. (2017). Hydrological excitation of polar motion by different variables from the GLDAS models. J. Geodesy. 91. 1461-1473.
https://doi.org/10.1007/s00190-017-1036-8

86. Wu F., Deng K., Chang G., Wang Q. (2018). The application of a combination of least-squares and autoregressive methods in predictions of polar motion parameters. Acta Geod. Gophys. 53. 247-257.
https://doi.org/10.1007/s40328-018-0214-3

87. Xu X., Zhou Y. (2015). EOP prediction using least square fitting and autoregressive filter over optimized data intervals. Adv. Space Res. 56(10). 2248-2253.
https://doi.org/10.1016/j.asr.2015.08.007

88. Yamaguchi R., Furuya M. (2024). Can we explain the post-2015 absence of the Chandler wobble? Earth, Planets and Spase. 76(1). 1-10.
https://doi.org/10.1186/s40623-023-01944-y

89. Yashkov V. Y. (1965). Spectrum of the motion of the Earth's poles. Sov. Astron. 8. 605-607.

90. Yatskiv Ya. S. (1997). On the excitation of the Chandler wobble. Kinematics and Phys. Celestial Bodies. 13(5). 42-47.

91. Yatskiv Ya. S. (2000). Chandler motion observations. Eds S. Dick, D. McCarthy, B. Luzum. Polar Motion: Historical and Scientific Problems. ASP Conf. Ser. 208. 383-396.
https://doi.org/10.1017/S0252921100061522

92. Yatskiv Ya. S., Korsun A. A., Rykhlova L. V. (1973). Spectrum of the coordinates of the Earth's pole during the period 1846-1971. Sov. Astron.16. 1041-1045.

93. Zalivadny N. M. (1997). On possibility of presentation the results of latitude observations in a high-frequency region with the scheme autoregression. Kinematics and Phys. Celestial Bodies. 13 (5). 48-57.

94. Zhang W., Shen W. (2020). New estimation of triaxial three-layered Earth's inertia tensor and solutions of Earth rotation normal modes. Geodesy and Geodynamics. 11(5). 307-315.
https://doi.org/10.1016/j.geog.2020.03.005

95. Zotov L. V., Bizouard C. H. (2012). On modulations of the Chandler wobble excitation. J. Geodyn. 62. 30-34.
https://doi.org/10.1016/j.jog.2012.03.010

96. Zotov L. V., Bizouard C. H. (2015). Regional atmospheric influence on the Chandler wobble. Adv. Space Res. 55(5). 1300-1306.
https://doi.org/10.1016/j.asr.2014.12.013

97. Zotov L. V., Bizouard C. H., Shum C. K. (2016). A possible interrelation between Earth rotation and climatic variability at decadal time-scale. Geodesy and Geo¬dynamics. 7(3). 216-222.
https://doi.org/10.1016/j.geog.2016.05.005