Wave atmospheric disturbances from the solar terminator in the morning and evening hours based on measurements of amplitudes of VLF radio signals
1Fedorenko, AK, Kryuchkov, EI, 2Voitsekhovska, AD, 1Cheremnykh, OK, 1Zhuk, IT 1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine 2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(6):3-18 |
https://doi.org/10.15407/kfnt2024.06.003 |
Language: Ukrainian |
Abstract: ЗWave disturbances from the solar terminator in the morning and evening hours were investigated using a ground-based network of very low frequency (VLF) radio stations. The data of measurements of the amplitudes of VLF radio signals on the GQD–A118 radio path with a transmitter in Great Britain (GQD, f = 22.1 kHz) and a receiving point in France (A118) were used. Amplitudes of radio signals change as a result of the propagation of atmospheric waves at the altitudes of localization of the upper wall of the Earth-ionosphere VLF waveguide. This makes it possible to use a network of VLF radio stations to monitor wave activity in the mesosphere (lower ionosphere). Based on the analysis of experimental data, it was established that pronounced periodic fluctuations in the amplitudes of radio signals are observed in the evening and in the morning for several hours after the passage of the solar terminator. Histograms of the distribution of these fluctuation periods for several months were constructed. The predominance of periods of radio signal fluctuations of 20—25 minutes was revealed both in the evening and in the morning hours. For the evening terminator, this result is consistent with our previous studies. The predominance of approximately the same wave periods in the morning was established for the first time. It is assumed that the observed fluctuations are caused by the propagation of acoustic- gravitational waves from the solar terminator. The existence of a dominant period probably indicates that these perturbations represent a fundamental wave mode moving synchronously with the solar terminator. |
Keywords: acoustic-gravitational waves, radio signals of very low frequencies, solar terminator |
1. Klymenko Y. O., Fedorenko A. K., Kryuchkov E. I., et al. (2021). Identification of acoustic-gravity waves from satellite measurements. Kinematika i fizika nebesnyh til. 37(6). 3-18.
https://doi.org/10.15407/kfnt2021.06.003
2. Beer T. (1973). Supersonic generation of atmospheric waves. Nature. 242(5392). 34-34.
https://doi.org/10.1038/242034a0
3. Berry L. A. (1964). Wave Hop Theory of Long Distance Propagation of Low-Frequency Radio Waves. Radio Sci. J. Res. 68D (12). 1275-1284.
https://doi.org/10.6028/jres.068D.132
4. Bespalova A. V., Fedorenko A. K., Cheremnykh O. K., Zhuk I. T. (2016). Satellite observations of wave disturbances caused by moving solar terminator. J. Atmos. Solar. Terr. Phys. 140. 79-85.
https://doi.org/10.1016/j.jastp.2016.02.012
5. Cheremnykh O., Fedorenko A., Voitsekhovska A., Selivanov Yu., Ballai I., Verth G., Fedun V. (2023). Atmospheric waves disturbances from the solar terminator according to the VLF radio stations data. Adv. Space Res. 72(11). 4825-4835.
https://doi.org/10.1016/j.asr.2023.08.036
6. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Voitsekhovska A. D., Klymenko Yu. O. Recover of acoustic-gravity wave properties revealed from measurements of VLF radio wave amplitudes. arXiv: 2011.05084v1 [physics.ao-ph] 10 Nov 2020. https://doi.org/10.48550/arXiv.2011.05084.
7. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Voitsekhovska A. D., Rapoport Yu. G., Klymenko Yu. O. (2021). Analysis of acoustic-gravity waves in the mesosphere using VLF radio signal measurements. J. Atmos. Terr. Phys. 219. 105649.
https://doi.org/10.1016/j.jastp.2021.105649
8. Gasque L. C., Harding B. J., Immel T. J., Wu Y.- J., Triplett C. C., Vadas S. L., et al. (2024). Evening solar terminator waves in Earth's thermosphere: Neutral wind signatures observed by ICON-MIGHTI. J. Geophys. Res.: Space Phys. 129. e2023JA032274.
https://doi.org/10.1029/2023JA032274
9. Kolarski A., Grubor D. (2015). Comparative analysis of VLF signal variation along trajectory induced by X-ray solar flares. J. Astrophys. Astron. 36 (4). 565-579.
https://doi.org/10.1007/s12036-015-9361-x
10. Kozak L. V., Dzubenko M. I., Ivchenko V. M. (2004). Temperature and thermosphere dynamics behavior analysis over earthquake epicentres from satellite measurements. Phys. and Chem. Earth. 29. 507-515, https://doi.org/10.1016/j.pce.2003.09.020.
11. Miyoshi Y., Fujiwara H., Forbes J. M., Bruinsma S. L. (2009). Solar terminator wave and its relation to the atmospheric tide. J. Geophys. Res. 114(A7). A07303.
https://doi.org/10.1029/2009JA014110
12. Nina A., Cadeс V. M. (2013). Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves. Geophys. Res. Lett. 40(18). 4803-4807.
https://doi.org/10.1002/grl.50931
13. Roy A., Roy S., Misra A. P. (2019). Dynamical properties of acoustic-gravity waves in the atmosphere. J. Atmos. and Solar-Terr. Phys. 186. 78-81.
https://doi.org/10.1016/j.jastp.2019.02.009
14. Silber I., Price C. (2016). On the use of VLF narrowband measurements to study the lower ionosphere and the mesosphere - lower thermosphere. Surveys Geophys. 38(2). 407-441.
https://doi.org/10.1007/s10712-016-9396-9
15. Somsikov V. M. (1983). Solar terminator and dynamics of the atmosphere. Alma-Ata. Nauka.
16. Somsikov V. M., Ganguly B. (1995). On the mechanism of formation of atmospheric inhomogeneties in the solar terminator region. J. Atmos. Sol. Terr. Phys. 57. 75-83.
https://doi.org/10.1016/0021-9169(93)E0017-4
17. Wait J. R., Spies K. P. (1964). Characteristics of the Earth-ionosphere waveguide for VLF radio waves. National Bureau of Standards, Technical Note, N 300.
https://doi.org/10.6028/NBS.TN.300
18. Yoshida M., Yamauchi T., Horie T., et al. (2008). On the generation mechanism of terminator times in subionospheric VLF/ELF propagation and its possible applica¬tion to seismogenic effects. Nat. Hazards Earth Syst. Sci. 8. 129-134.
https://doi.org/10.5194/nhess-8-129-2008