Sensitivity of the Fe IX 17.1 nm line profile to slow magneto-acoustic waves propagating in a solar coronal loop
1Mamedov, SG, Aliyeva, ZF, Samedov, ZA 1Nasir al-Din al-Tusi Shamakhi Astrophysical Observatory, Pirqulu, Azerbaijan |
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(6):45-58 |
https://doi.org/10.15407/kfnt2024.06.045 |
Language: Ukrainian |
Abstract: The study of MHD waves in coronal structures is of great importance in coronal seismology. The study of these waves makes it possible to reveal the physical structure and heating mechanism of the solar corona. It is of great interest to calculate the line profile in the emission spectrum of a magneto-sonic wave for various physical parameters, calculate the energy flux and compare them with observations. In this paper, the profiles of the Fe IX 171 line in the emission spectrum of slow magneto-acoustic waves propagating in coronal loops are calculated for cases of an optically thin layer and the change in density. The line profiles were calculated for the following parameter values: wave velocity amplitude 10 km/s, coronal loop width 2000 km and 5000 km, wavelength = 20000 km and 50000 km, Doppler width = 0.01 , and at values of the angle of the line of sight and at different phases of the wave. The energy flux density is 622.5 W/m2. The calculated values of the energy flux density strongly depend on the angle of the line of sight and on the phase of the wave and range from zero at large values of to ~4 W/m2, the values of Doppler velocities and velocities of non-thermal movements at small values of have a maximum value of ~13 km/s and decrease almost to zero at large values of . At different values of the angle of the line of sight, the asymmetry is almost not noticeable. An interesting result is that the values of the calculated (observed) energy flux can be both much less and much more than the true value: from almost zero at small values of . These values depend not only on the angle of the line of sight, but also on the width of the coronal loop and the wavelength. |
Keywords: MHD waves, slow magneto-acoustic waves, solar corona |
1. Aschwanden M. J. (2005) Physics of the Solar Corona: An Introduction with Problems and Solutions. Springer-Praxis Books in Geophysical Sciences. Berlin, New York, Chichester: Springer Praxis. 892 p.
2. Brooks D. H., Warren H. P. (2016) Measurements of non-thermal line widths in solar active regions. Astrophys. J., 820, 63.
https://doi.org/10.3847/0004-637X/820/1/63
3. Bruner E. C., Jr. (1978) Dynamics of the solar transition zone. Astrophys. J., 226, 1140-1146.
https://doi.org/10.1086/156691
4. Сurdt W., Wang T. J., Innes D. E., Solanki S. K., Damasch I. E., Kliem B., Offman L. (2002). Doppler oscillations in hot coronal loops. ESA_SP-506.
5. Del Zanna G., Mason H. E. (2018) Solar UV and X-ray diagnostics. Living Rev. Solar Phys., 15, 5.
https://doi.org/10.1007/s41116-018-0015-3
6. De Moortel I. (2005) An overview of coronal seismology. Philos. Trans. R. Soc. London. Ser. A, 363, 2743-2760.
https://doi.org/10.1098/rsta.2005.1665
7. De Moortel I. (2006) Propagating magnetohydrodynamics waves in coronal loops. Philos. Trans. R. Soc. London. Ser. A, 364, 461-472.
https://doi.org/10.1098/rsta.2005.1710
8. De Moortel I. (2009) Longitudinal waves in coronal loops. Space Sci. Rev., 149, 65-81.
https://doi.org/10.1007/s11214-009-9526-5
9. De Moortel I., Hood A. W., Ireland J., Walsh R. W. (2002) Longitudinal intensity oscillations in coronal loops observed with trace. II. Discussion of measured parameters. Solar Phys., 209, 89-108.
https://doi.org/10.1023/A:1020960505133
10. De Moortel I., Ireland J., Walsh R. W. (2000) Observation of oscillations in coronal loops. Astron. and Astrophys., 355, L23-L26.
https://doi.org/10.1063/1.1324943
11. De Moortel I., Nakariakov V. M. (2012) Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Philos. Trans. R. Soc. London. Ser. A, 370, 3193-3216.
https://doi.org/10.1098/rsta.2011.0640
12. De Pontieu B., McIntosh S. W. (2010) Quasi-periodic propagating signals in the solar corona: the signature of magneto-acoustic waves or high-velocity up flows. Astrophys. J., 722, 1013-1029.
https://doi.org/10.1088/0004-637X/722/2/1013
13. De Pontieu B., McIntosh S. W., Hansteen V. H., Schrijver C. J. (2009) Observing the roots of solar coronal heating in the chromosphere. Astrophys. J., 701, L1-L6.
https://doi.org/10.1088/0004-637X/701/1/L1
14. Kitagawa N., Yokoyama T., Imada S., Hara H. (2010) Mode identification of MHD waves in an active region observed with HINODE/EIS. Astrophys. J.,721, 744-749.
https://doi.org/10.1088/0004-637X/721/1/744
15. Kjeldseth-Moe O., Brekke P. (1998) Time variability of active region loops observed with. The coronal diagnostic spectrometer (CDS) on SOHO. Solar Phys., 182, 73-95.
https://doi.org/10.1023/A:1005031711233
16. Krishna Prasad S., Banerjee D., Van Doorsselaere T., Singh J. (2012) Omnipresent long-period intensity oscillations in open coronal structures. Astron. and Astrophys., 546, A50.
https://doi.org/10.1051/0004-6361/201219885
17. Mamedov S. G., Aliyeva Z. F., Alisheva K. I. (2021) 17.1 nm Fe IX line in the radiation spectrum of slow magneto-acoustic waves propagating in the solar crown. Kinemat. and Phys. Celest. Bodies, 37(6), 49-61.
https://doi.org/10.15407/kfnt2021.06.049
18. Mamedov S. G., Kuli-Zade D. M., Aliyeva Z. F., Alisheva K. I. (2020) About heating of the solar corona by MHD waves. Astron. J. Azerbaijan, 15(2), 16-26.
19. Mamedov S. G. Kuli-Zade D. M., Aliyeva Z. F., Musayev M. M. (2018) Doppler width of spectral lines. Kinemat. and Phys. Celest. Bodies, 34(2), 102-105.
https://doi.org/10.3103/S0884591318020058
20. Mariska J. T., Harry P. W., David R. W., Watanabe T. (2008) Observations of Doppler shift oscillations with the EUV imaging spectrometer on HINODE. Astrophys. J., 681, L41-L44.
https://doi.org/10.1086/590341
21. Mariska J. T., Muglach K. (2010) Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on HINODE. Astrophys. J., 713, 573-583.
https://doi.org/10.1088/0004-637X/713/1/573
22. McIntosh S. W., De Pontieu B. (2009) High-speed transition region and coronal upflows in the quiet Sun. Astrophys. J., 707, 524-538.
https://doi.org/10.1088/0004-637X/707/1/524
23. Nakariakov V. M., Verwichte E. (2005) Coronal waves and oscillations. Living Rev. Solar Phys., 2, 3.
https://doi.org/10.12942/lrsp-2005-3
24. Ofman L., Nakariakov V. M., Deforest C. E. (1999) Slow magnetosonic waves in coronal plumes. Astrophys. J., 514, 441-447.
https://doi.org/10.1086/306944
25. Ofman L., Wang T. (2002) Hot coronal loop oscillations observed by SUMER: Slow magnetosonic wave damping by thermal conduction. Astrophys. J. Lett., 580, L85-L88.
https://doi.org/10.1086/345548
26. O'shea E., Banerjee D., Doyle J. G. (2007) A statistical study of wave propagation in coronal holes. Astron. and Astrophys., 463, 713-725.
https://doi.org/10.1051/0004-6361:20065592
27. Porter L. J., Klimchuk J. A., Sturrock P. A. (1994) The role of MHD waves in heating of the Solar Corona. Astrophys. J., 435, 482-501.
https://doi.org/10.1086/174830
28. Reale F. (2010) Coronal loops: observations and modeling of confined plasma. Living Rev. Solar Phys., 7, 5.
https://doi.org/10.12942/lrsp-2010-5
29. Sakurai T., Ichimoto K., Raju K. P., Singh J. (2002) Spectroscopic observation of coronal waves. Solar Phys., 209, 265-286.
https://doi.org/10.1023/A:1021297313448
30. Threlfall J., De Moortel I., McIntosh S. W., Bethge C. (2013) First comparison of wave observations from CoMP and AIA/SDO. Astron. and Astrophys., 556, A124.
https://doi.org/10.1051/0004-6361/201321782
31. Verwichte E., Marsh M., Foullon C., Van Doorsselaere T., De Moortel I., Hood A. W., Nakariakov V. M. (2010) Periodic spectral line asymmetries in solar coronal structures from slow magneto-acoustic waves. Astrophys. J., 724, L194-L198.
https://doi.org/10.1088/2041-8205/724/2/L194
32. Wang T. J., Ofman L., Davila J. M., Mariska J. T. (2009) Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astron. and Astrophys., 503, L25-L28.
https://doi.org/10.1051/0004-6361/200912534
33. Wang T. J., Solanki S. K., Curdt W., Innes D. E., Dammasch L. E. (2002) Oscilating hot loops observed by SUMER. ESASP.508.465W
34. Wang T. J., Solanki S. K., Innes D. E., Curdt W., Marsch E. (2003) Slow-mode standing waves observed by SUMER in hot coronal loops. Astron. Astrophys., 402, L17-L20.
https://doi.org/10.1051/0004-6361:20030448