Physical parameters of superhumps in five dwarf nova systems based on TESS observations

Dzygunenko, A, Baransky, O, Krushevska, V
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(5):3-18
https://doi.org/10.15407/kfnt2025.05.003
Language: Ukrainian
Abstract: 

This study presents a detailed analysis of five cataclysmic variable systems of the dwarf nova class: Gaia21djh, Gaia19bwr, Gaia21akq, Gaia21enu, and Gaia18cjn. Using photometric data from the TESS space telescope and the ASAS-SN sky survey archive, we determined the superhump periods (Psh) and orbital periods (Porb) for three SU UMa-type systems. For Gaia21djh, we obtained Psh = 0.08214 days and Porb = 0.0786 days; similar values were determined for Gaia19bwr and Gaia21akq. For Gaia18cjn and Gaia21enu, the presence of stable superhumps was not confirmed, although Gaia18cjn shows an orbital period of Porb = 0.189 days. The analysis of physical parameters, including mass ratios q, component masses M1, M2, and radii R1, R2, showed that all SU UMa systems have low q values (< 0.3), consistent with tidal instability. For example, Gaia21akq has q = 0.24 ± 0.03, which supports previous theoretical models. The study of superoutburst parameters revealed significant variability in the duration of different phases. Gaia19bwr exhibited the longest plateau phase duration (DP = 9.6 ± 1.7 days), while for Gaia21akq it was DP = 6.5 ± 0.6 days. The largest superoutburst amplitudes were observed in Gaia21djh (ASO= 4.3 ± 0.2) and Gaia19bwr (4.2 ± 0.3). The obtained results are consistent with the thermal-tidal instability model for SU UMa-type systems and highlight the importance of high-precision photometric observations in studying accretion disk dynamics.

Keywords: cataclysmic variables, dwarf novae, outbursts, photometry, superhumps, TESS
References: 

1. Andrae R. (2010). Error estimation in astronomy: A guide. arXiv preprint arXiv:1009.2755. URL: https://ui.adsabs.harvard.edu/abs/2010arXiv1009.2755A

2. Applegate A. (2012). Determining the orbital period of the cataclysmic variable CSS1204 using data from the Vatican advanced technology telescope. NSF/REU Program, Physics Department, University of Notre Dame.

URL: https://physics.nd.edu/assets/80449/

3. Arenas J., Mennickent R. E. (1998). The orbital period of the SU Ursae Majoris star AK Cancri. Astron. and Astrophys. 337, 472-476.

URL: https://ui.adsabs.harvard.edu/abs/1998AfeA...337..472A

4. Bruch A. (2023). TESS light curves of cataclysmic variables - II - Superhumps in old novae and novalike variables. Mon. Notic. Roy. Astron. Soc., 519(1), 352-376.
https://doi.org/10.1093/mnras/stac3493

5. Buat-MJnard V., Hameury J.-M. (2002). Superoutbursts, superhumps and the tidal-thermal instability model. Astron. and Astrophys. 386. 891-898.
https://doi.org/10.1051/0004-6361:20020307

6. De Miguel E., Patterson J., Cejudo D., et al. (2016). Accretion-disc precession in UX Ursae Majoris. Mon. Notic. Roy. Astron. Soc., 457(2), 1447-1455.
https://doi.org/10.1093/mnras/stv3014

7. Hirose M., Osaki Y. (1989). Hydrodynamic simulation of accretion disks in cataclysmic Variables. In F. Meyer (Ed.), Theory of Accretion Disks: Proc. NATO Advanced Research Workshop, Garching, March 6-10, 1989 (NATO ASI Series C, 290, 207). Dordrecht: Kluwer Academic Publishers.
https://doi.org/10.1007/978-94-009-1037-9_19

8. Hirose M., Osaki Y. (1990). Hydrodynamic simulations of accretion disks in cataclysmic variables: Superhump phenomenon in SU UMa Stars. Publ. Astron. Soc. Jap., 42, 135-163.
https://doi.org/10.1093/pasj/42.1.135

9. Huang C. X., Quinn S.N., Vanderburg A., Phttps://doi.org/10.3847/2041-8213/ab7302

10. Kato T., Imada A., Uemura M., et al. (2009). Survey of period variations of superhumps in SU UMa-type dwarf novae. Publ. Astron. Soc. Jap., 61, S395- S616. URL: https://ui.adsabs.harvard.edu/abs/2009PASJ...61S.395K
https://doi.org/10.1093/pasj/61.sp2.S395

11. Lightkurve Collaboration, Cardoso J. V. de M. Hedges C., et al. (2018). Lightkurve: Kepler and TESS time series analysis in Python. Astrophys. Source Code Library, ascl:1812.013. URL: https: //ui.adsabs.harvard.edu/abs/2018ascl.soft12013L

12. Lubow S. H. (1991). Simulations of tidally driven eccentric instabilities with application to superhumps. Astrophys. J., 381, 268-277.
https://doi.org/10.1086/170648

13. Osaki Y. (1998). Thermal-tidal instability model for SU UMa stars. In Wild Stars In The Old West: Proceedings ofthe 13th North American Workshop on Cataclysmic Variables and Related Objects, ASP Conf. Ser. 137, 334-341.

URL: https://ui.adsabs.harvard.edu/abs/1998ASPC..137..334O

14. Otulakowska-Hypka M., Olech A., Patterson J. (2016). Stati¬stical analysis of pro¬per- ¬ties of dwarf novae outbursts. Mon. Notic. Roy. Astron. Soc., 460(3), 2526-2541. URL: https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.2526O
https://doi.org/10.1093/mnras/stw1120

15. Patterson J., Fried R. E., Rea R., et al. (2002). Superhumps in cataclysmic binaries. XXI. HP Librae. Publ. Astron. Soc. Pacif., 114(791), 65-73.
https://doi.org/10.1086/339450

16. Patterson J., Kemp J., Harvey D. A., Fried R. E., Rea R., et al. (2005). Superhumps in cataclysmic binaries. XXV. qcrit, e(q), and Mass-Radius Publ. Astron. Soc. Pacif., 117(837), 1204-1222.
https://doi.org/10.1086/447771

17. Pavlenko E., Pit N., Kato T. (2024). Negative and positive superhumps of V503 Cyg as seen in TESS data. I. Seasons 2019 and 2021. Contrib. Astron. Observ. Skalnate Pleso, 54(1), 20-35. URL: https://ui.adsabs.harvard.edu/abs/2024CoSka..54a..20P
https://doi.org/10.31577/caosp.2024.54.1.20

18. Ricker G. R., Winn J. N., Vanderspek R., et al. (2015). Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes, Instruments, and Systems, 1(1), 014003.
https://doi.org/10.1117/1.JATIS.1.1.014003

19. Stassun K. G., Oelkers R. J., Pepper J., et al. (2019). The revised TESS input catalog and candidate target list. Astron. J. 158(4), 138.
https://doi.org/10.3847/1538-3881/ab3467

20. Stefanov S. Y., Latev G., Boeva S., Moyseev M. (2022). Superhumps in the cataclysmic variable BG Triangulum. Mon. Notic. Roy. Astron. Soc., 516(2), 2775- 2781. URL: https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.2775S
https://doi.org/10.1093/mnras/stac2317

21. Vogt N. (1974). Photometric study of the dwarf nova VW Hydri. Astron. and Astrophys., 36, 369-378.

URL: https://ui.adsabs. harvard.edu/abs/1974A&A36..369V

22. Wei L., Shengbang Q. (2023). Investigation of superhumps in SU UMa-type dwarf novae based on the observations of TESS. Astrophys. J., 954(2), Article ID 135.
https://doi.org/10.3847/1538-4357/acebdf

23. Whitehurst R. (1988). Numerical simulations of accretion discs - I. Superhumps: a tidal phenomenon of accretion discs. Mon. Notic. Roy. Astron. Soc., 232, 35-51.
https://doi.org/10.1093/mnras/232.1.35

24. Wood M. A., Still M. D., Howell S. B., Cannizzo J. K., Smale A. P. (2011). V344 Lyrae: A touchstone SU UMa cataclysmic variable in the Kepler Field. Astrophys. J., 741(2), 105. 10.48550/arXiv.1009.2755
https://doi.org/10.1088/0004-637X/741/2/105

25. Zechmeister M., Khrster M. (2009). The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. and Astrophys. 496(2), 577-584.
https://doi.org/10.1051/0004-6361:200811296