Effects of the solar eclipse on June 21, 2020 in low-latitude ionosphere total electron content

Heading: 
1Chernogor, LF, Luo, Y, 1Mylovanov, YB, Dorokhov, VL
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(6):16-42
https://doi.org/10.15407/kfnt2025.06.016
Language: Ukrainian
Abstract: 

Solar eclipses (SEs) are accompanied by both regular and a number of irregular effects, as well as individual effects inherent in this SE. The following questions remain unanswered: can there be effects prior to the SE? How long do they last after the end of the SE? Do they appear on the night side of the planet? What effects occur in the magnetically conjugate region? What is the role of dynamic processes and geophysical fields in the interaction of subsystems in the Earth-atmosphere-ionosphere-magnetosphere system during the SE? These questions need to be addressed. The aim of this paper is to present the results of observations of temporal variations of total electron content (TEC) in the ionosphere over China, obtained using Global Navigation Satellite System during the SE and reference days. The low-latitude ionosphere has certain features that could not fail to manifest themselves in the effects of the SE. Estimation of the ionospheric response to the annular SE was performed using recordings of GPS satellite signals obtained on dual-frequency receivers. The error of the TEC calculation technique used in the study does not exceed 0.1 TECU. To obtain acceptable results, the mutual motions of the TEC measurement point, lunar shadow, and Earth’s rotation were taken into account. The ionospheric effect of the SE, which consisted in a significant reduction in TEC, was confidently observed at all 5 stations and for all 7 satellites. It was found that the deficit of TEC clearly followed the maximum magnitude value of the SE. The maximum deficit of TEC reached 6...7 TECU at a magnitude of Mmax ≈ 0.976...0.986. In this case, the relative reduction of TEC was 35...37 %. The time delay of the maximum reduction of TEC relative to the maximum magnitude of the SE was close to 15 min. This result is in good agreement with the known data. The moments of the beginning and end of the TEC reduction, in general, did not coincide with the changes in the SE magnitude. The duration of the ionospheric effect was usually longer than the duration of the eclipse. There was no clear dependence of the ionospheric effect on latitude and longitude. No increase in the wave activity during the SE was detected. The effects of the annular SE, which took place in the low-latitude ionosphere near the summer solstice, had a number of features.

Keywords: deficit of total electron content, low-latitude ionosphere, solar eclipse, temporal variations of total electron content, total electron content
References: 

1. Aa E., Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Jonah O. F., Lei J., Huang F., Dang T., Liu L. (2020). Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019. J. Geophys. Res.: Space Phys., 125(11), e2020JA028296.
https://doi.org/10.1029/2020JA028296

2. Aa E., Zhang S.-R., Shen H., Liu S., Li J. (2021). Local and conjugate ionospheric total electron content variation during the 21 June 2020 solar eclipse. Adv. Space Res., 68(8), 3435-3454.
https://doi.org/10.1016/j.asr.2021.06.015

3. Afraimovich E. L., Palamartchouk K. S., Perevalova N. P., Chernukhov V. V., Lukhnev A. V., Zalutsky V. T. (1998). Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett., 25(4), 465-468.
https://doi.org/10.1029/98GL00186

4. Akimov L. A., Bogovskii V. K., Grigorenko E. I., Taran V. I., Chernogor L. F. (2005). Atmospheric - ionospheric effects of the solar eclipse of May 31, 2003, in Kharkov. Geomagn. Aeron., 45(4), 494-518.

5. Burmaka V. P., Chernogor L. F. (2013). Solar eclipse of August 1, 2008, above Kharkov: 2. Observation results of wave disturbances in the ionosphere. Geomagn. Aeron., 53(4), 479-491.
https://doi.org/10.1134/S001679321304004X

6. Burmaka V. P., Taran V. I., Chernogor L. F. (2006). Wave-like processes in the ionosphere under quiet and disturbed conditions. 1. Kharkov incoherent scatter radar observations. Geomagn. Aeron., 46(2), 183-198.
https://doi.org/10.1134/S0016793206020071

7. Burmaka V. P., Taran V. I., Chernogor L. F. (2006). Wave-like processes in the ionosphere under quiet and disturbed conditions. 2. Analysis of observations and simulation. Geomagn. Aeron., 46(2), 199-208.
https://doi.org/10.1134/S0016793206020083

8. Chen C.-H., Lin C.-H. C., Matsuo T. (2019). Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach. Prog. Earth Planet. Sci., 6, 13.
https://doi.org/10.1186/s40645-019-0263-4

9. Chen Y., Feng P., Liu C., Chen Y., Huang L., Duan J., Hua Y., Li X. (2021). Impact of the annular solar eclipse on June 21, 2020 on BPL time service performance. AIP Advances, 11(11), 115003.
https://doi.org/10.1063/5.0064445

10. Cheng K., Huang Y.-N., Chen S.-W. (1992). Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region. J. Geophys. Res., 97(A1), 103-112.
https://doi.org/10.1029/91JA02409

11. Cherniak I., Zakharenkova I. (2018). Ionospheric total electron content response to the great American solar eclipse of 21 August 2017. Geophys. Res. Lett., 45(3), 1199-1208.
https://doi.org/10.1002/2017GL075989

12. Chernogor L. F. (2010). Wave response of the ionosphere to the partial solar eclipse of August 1, 2008. Geomagn. Aeron., 50(3), 346-361.
https://doi.org/10.1134/S0016793210030096

13. Chernogor L. F. (2012). Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron., 52(6), 768-778.
https://doi.org/10.1134/S0016793212050039

14. Chernogor L. F. (2012). Effects of solar eclipses in the ionosphere: Doppler sounding results: 2. Spectral Analysis. Geomagn. Aeron., 52(6), 779-792.
https://doi.org/10.1134/S0016793212050040

15. Chernogor L. F. (2013). Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

16. Chernogor L. F. (2016). Wave processes in the ionosphere over Europe that accompanied the solar eclipse of March 20, 2015. Kinematics and Phys. Celestial Bodies, 32(4), 196-206.
https://doi.org/10.3103/S0884591316040024

17. Chernogor L. F., Barabash V. V. (2015). The effects of solar eclipse of March 20, 2015 over ionosphere of Europe: ionosonde observations. Radio Phys. Radio Astron., 20(4), 311-331. [in Russian].
https://doi.org/10.15407/rpra20.04.311

18. Chernogor L. F., Domnin I. F., Emelyanov L. Y., Lyashenko M. V. (2019). Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Solar-Terr. Phys., 182, 1-9.
https://doi.org/10.1016/j.jastp.2018.10.016

19. Chernogor L. F., Garmash K. P. (2022). Ionospheric processes during the partial solar eclipse above Kharkiv on June 10, 2021. Kinematics and Phys. Celestial Bodies, 38(2), 61-72.
https://doi.org/10.3103/S0884591322020039

20. Chernogor L. F., Garmash K. P., Guo Q., Luo Y., Rozumenko V. T., Zheng Y. (2022). Characteristic features of variations in HF radio wave parameters in the ionosphere during the course of the solar eclipse of June 21, 2020 over the People's Republic of China. Radio Phys. Radio Astron., 26(4), 326-343. [in Ukrainian].
https://doi.org/10.15407/rpra26.04.326

21. Chernogor L. F., Garmash K. P., Zhdanko Y. H., Leus S. G., Luo Y. (2021). Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021. Radio Phys. Radio Astron., 26(4), 326-343. [in Ukrainian].
https://doi.org/10.15407/rpra26.04.326

22. Chernogor L. F., Mylovanov Y. B. (2020). Ionospheric effects of the August 11, 2018, solar eclipse over the People's Republic of China. Kinematics and Phys. Celestial Bodies, 36(6), 37-64.
https://doi.org/10.15407/kfnt2020.06.037

23. Chernogor L. F., Mylovanov Y. B. (2022). Ionospheric effects from the June 10, 2021 solar eclipse in the Polar Region. Kinematics and Phys. Celestial Bodies, 38(4), 29-52. [in Ukrainian].
https://doi.org/10.3103/S088459132204002X

24. Chernogor L. F., Mylovanov Y. B., Luo Y. (2022). Effects from the June 10, 2021 solar eclipse in the high-latitude ionosphere: results of GPS observations. Radio Phys. Radio Astron., 27(1), 15-31 [in Ukrainian].
https://doi.org/10.15407/rpra27.02.093

25. Choudhary R. K., St.-Maurice J.-P., Ambili K. M., Sunda S., Pathan B. M. (2011). The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities. J. Geophys. Res. Space Phys., 116(A9), A09309.
https://doi.org/10.1029/2011JA016504

26. Cnossen I., Ridley A. J., Goncharenko L. P., Harding B. J. (2019). The response of the ionosphere-thermosphere system to the 21 August 2017 solar eclipse. J. Geophys. Res. Space Phys., 124(8), 7341-7355.
https://doi.org/10.1029/2018JA026402

27. Coster A. J., Goncharenko L., Zhang S.-R., Erickson P. J., Rideout W., Vierinen J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys. Res. Lett., 44(24), 12041-12048.
https://doi.org/10.1002/2017GL075774

28. Dang T., Lei J., Wang W., Zhang B., Burns A., Le H., Wu Q., Ruan H., Dou X., Wan W. (2018). Global responses of the coupled thermosphere and ionosphere system to the August 2017 great American solar eclipse. J. Geophys. Res. Space Phys., 123(80), 7040-7050.
https://doi.org/10.1029/2018JA025566

29. Dang T., Lei J. H., Wang W. B., Yan M. D., Ren D. X., Huang F. Q. (2020). Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse. Earth Planet. Phys., 4(3), 231-237.
https://doi.org/10.26464/epp2020032

30. Domnin I. F., Yemel'yanov L. Ya., Kotov D. V., Lyashenko M. V., Chernogor L. F. (2013). Solar eclipse of August 1, 2008, above Kharkov: 1. Results of incoherent scatter observations. Geomagn. Aeron., 53(1), 113-123.
https://doi.org/10.1134/S0016793213010076

31. Domnin I. F., Emelyanov L. Y., Lyashenko M. V., Chernogor L. F. (2014). Partial solar eclipse of January 4, 2011 above Kharkiv: Observation and simulations results. Geomagn. Aeron., 54(5), 583-592.
https://doi.org/10.1134/S0016793214040112

32. Grigorenko E. I., Lyashenko M. V., Chernogor L. F. (2008). Effects of solar eclipse of March 29, 2006, in the ionosphere and atmosphere. Geomagn. Aeron., 48(3), 337-351.
https://doi.org/10.1134/S0016793208030092

33. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018. Radio Sci., 55(2), e2019RS006866.
https://doi.org/10.1029/2019RS006866

34. Huang F., Li Q., Shen X., Xiong C., Yan R., Zhang S.-R., Wang W., Aa E., Zhong J., Dang T., Lei J. (2020). Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020. J. Geophys. Res. Space Phys., 125(10), e2020JA028483.
https://doi.org/10.1029/2020JA028483

35. Huang L., Liu C., Chen Y., Wang X., Feng P., Li X. (2021). Observations and analysis of the impact of annular eclipse on 10 MHz short-wave signal in Sanya area on June 21, 2020. AIP Advances, 11(11), 115317.
https://doi.org/10.1063/5.0068778

36. Huba J. D., Drob D. (2017). SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett., 44(12), 5928-5935.
https://doi.org/10.1002/2017GL073549

37. Le H., Liu L., Ren Z., Chen Y., Zhang H. (2020). Effects of the 21 June 2020 solar eclipse on conjugate hemispheres: A modeling study. J. Geophys. Res. Space Phys., 125(11), e2020JA028344.
https://doi.org/10.1029/2020JA028344

38. Lei J., Dang T., Wang W., Burns A., Zhang B., Le H. (2018). Long-lasting response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse. J. Geophys. Res. Space Phys., 123(5), 4309-4316.
https://doi.org/10.1029/2018JA025460

39. Liu J.-Y., Wu T.-Y., Sun Y.-Y., Pedatella N. M., Lin C.-Y., Chang L. C., Chiu Y.-C., Lin C.-H., Chen C.-H., Chang F.-Y., Lee I-T., Chao C.-K., Krankowski A. (2020). Lunar tide effects on ionospheric solar eclipse signatures: The August 21, 2017 event as an example. J. Geophys. Res. Space Phys., 125(12), e28472.
https://doi.org/10.1029/2020JA028472

40. Nayak C., Yiit E. (2018). GPS-TEC observation of gravity waves generated in the ionosphere during 21 August 2017 total solar eclipse. J. Geophys. Res. Space Phys., 123(1), 725-738.
https://doi.org/10.1002/2017JA024845

41. Panasenko S. V., Otsuka Y., van de Kamp M., Chernogor L. F., Shinbori A., Tsugawa T., Nishioka M. (2019). Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Solar-Terr. Phys., 191, 105051.
https://doi.org/10.1016/j.jastp.2019.05.015

42. Patel K., Singh A. K. (2021). Changes in atmospheric parameters due to annular solar eclipse of June 21, 2020, over India. Indian J. Phys., 96, 1613-1624.
https://doi.org/10.1007/s12648-021-02112-2

43. Perry G. W., Watson C., Howarth A. D., Themens D. R., Foss V., Langley R. B., Yau A. W. (2019). Topside ionospheric disturbances detected using radio occultation measurements during the August 2017 solar eclipse. Geophys. Res. Lett., 46(13), 7069-7078.
https://doi.org/10.1029/2019GL083195

44. Reinisch B. W., Dandenault P. B., Galkin I. A., Hamel R., Richards P. G. (2018). Investigation of the electron density variation during the 21 August 2017 solar eclipse. Geophys. Res. Lett., 45(3), 1253-1261.
https://doi.org/10.1002/2017GL076572

45. entrk E., Arqim Adil M., Saqib M. (2021). Ionospheric total electron content response to annular solar eclipse on June 21, 2020. Adv. Space Res., 67(6), 1937-1947.
https://doi.org/10.1016/j.asr.2020.12.024

46. Shagimuratov I. I., Zakharenkova I. E., Tepenitsyna N. Y., Yakimova G. A., Efishov I. I. (2021). Features of the ionospheric total electronic content response to the annular solar eclipse of June 21, 2020. Geomagn. Aeron., 61, 756-762.
https://doi.org/10.1134/S001679322105011X

47. Sun Y.-Y., Chen C.-H., Qing H., Xu R., Su X., Jiang C., Yu T., Wang J., Xu H., Lin K. (2021). Nighttime ionosphere perturbed by the annular solar eclipse on June 21, 2020. J. Geophys. Res. Space Phys., 126(9), e2021JA029419.
https://doi.org/10.1029/2021JA029419

48. Sun Y.-Y., Liu J.-Y., Lin C. C.-H., Lin C.-Y., Shen M.-H., Chen C.-H., Chen C.-H., Chou M.-Y. (2018). Ionospheric bow wave induced by the Moon shadow ship over the continent of United States on 21 August 2017. Geophys. Res. Lett., 45(2), 538-544.
https://doi.org/10.1002/2017GL075926

49. Tripathi G., Singh S. B., Kumar S., Singh A. K., Singh R., Singh A. K. (2022). Effect of 21 June 2020 solar eclipse on the ionosphere using VLF and GPS observations and modeling. Adv. Space Res., 69(1), 254-265.
https://doi.org/10.1016/j.asr.2021.11.007

50. Tsai H. F., Liu J. Y. (1999). Ionospheric total electron content response to solar eclipses. J. Geophys. Res., 104(A6), 12657-12668.
https://doi.org/10.1029/1999JA900001

51. Universit@t Bern Astronomisches Institut. Satellite geodesy. CODE Products.

URL: ftp.aiub.unibe.ch/CODE/ (Last access: Sep 15, 2021).

52. Wang J., Zuo X., Sun Y.-Y., Yu T., Wang Y., Qiu L., Mao T., Yan X., Yang N., Qi Y., Lei J., Sun L., Zhao B. (2021). Multilayered sporadic-E response to the annular solar eclipse on June 21, 2020. Space Weather, 19(3), e2020SW002643.
https://doi.org/10.1029/2020SW002643

53. Wang W., Dang T., Lei J., Zhang S., Zhang B., Burns A. (2019). Physical Processes Driving the Response of the F2 Region Ionosphere to the 21 August 2017 Solar Eclipse at Millstone Hill. J. Geophys. Res. Space Phys., 124(4), 2978-2991.
https://doi.org/10.1029/2018JA025479

54. Wang X., Li B., Zhao F., Luo X., Huang L., Feng P., Li X. (2021). Variation of low-frequency time-code signal field strength during the annular solar eclipse on 21 June 2020: Observation and Analysis. Sensors, 21(4), 1216.
https://doi.org/10.3390/s21041216

55. Wu C., Ridley A. J., Goncharenko L., Chen G. (2018). GITM-data comparisons of the depletion and enhancement during the 2017 solar eclipse. Geophys. Res. Lett., 45(8), 3319-3327.
https://doi.org/10.1002/2018GL077409

56. Zhang R., Le H., Li W., Ma H., Yang Y., Huang H., Li Q., Zhao X., Xie H., Sun W., Li G., Chen Y., Zhang H., Liu L. (2020). Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse. J. Geophys. Res. Space Phys., 125(12), e2020JA028450.
https://doi.org/10.1029/2020JA028450

57. Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Rideout W., Vierinen J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett., 44(24), 12067-12073.
https://doi.org/10.1002/2017GL076054

58. Zhang S.-R., Erickson P. J., Vierinen J., Aa E., Rideout W., Coster A. J., Goncharenko L. P. (2021). Conjugate ionospheric perturbation during the 2017 solar eclipse. J. Geophys. Res. Space Phys., 126(2), e2020JA028531.
https://doi.org/10.1029/2020JA028531