Physical effects from the Yushu meteoroid. 3

Heading: 
1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(3):25-52
https://doi.org/10.15407/kfnt2023.03.025
Language: Ukrainian
Abstract: 

Comprehensive modeling studies of the processes induced in all geospheres by the passage and explosion of the meteoroid Yushu at the Province of Quinghai (People’s Republic of China) at 22 December 2020 have been conducted. Magnetic, electric, electromagnetic, ionospheric, and seismic effects, the effects of acoustic-gravity waves have been estimated. The magnetic effect of turbulence has been shown to be insignificant. The magnetic effect of the ionospheric currents and the current in the wake of the meteoroid could be substantial (~1 nT). Due to the accumulation of electrons in the atmospheric gravity wave field, the magnetic effect could reach the order of 1 nT. Under the action of an external electric field, a transient current pulse with the current density up to ~104 A could occur. The electrostatic effect could be accompanied by the accumulation of an electric charge of ~ 1...10 mC producing the electric field intensity of ~1 MV/m. The flow of the electric current in the wake of the meteoroid could result in the generation of an electromagnetic pulse in the 10 kHz band with the electric field intensity of 3...30 V/m. The electromagnetic effect of infrasound has been determined to be significant (3...20 V/m and 10...60 nT). The absorption of the shock wave at ionospheric dynamo region altitudes (100...150 km) could generate secondary atmospheric gravity waves with the ~0.1...1 relative amplitude. The passage of the meteoroid acted to produce a plasma wake not only in the lower but also in the upper atmosphere in the range no less than 1,000 km. The possibility of appearance of electrophonic effect was improbable. The possibilities of appearing the generation of the ion and magnetic sound by infrasound, as well as the generation of gradient-drift and drift-dissipative instabilities are discussed. A magnetic, electric, and electromagnetic effects dealt with in this paper partially fill up gaps in the theory of physical effects produced by meteoroids in the Earth — atmosphere — ionosphere — magnetosphere system. The magnitudes of magnetic, electric, electromagnetic, ionospheric, and acoustic effects were significant. The magnitude of the earthquake caused by the meteoroid explosion did not exceeded 2.5. The mean rate of the fall of celestial bodies similar to the Yushu meteoroid is equal to 0.49 yr–1.

Keywords: acoustic and atmospheric gravity waves, acoustic effects, comprehensive simulation, electric effects, electromagnetic effects, ionospheric effects, magnetic effects, plasma wake, seismic effects, Yushu meteoroid
References: 

1. Alpatov V. V., Burov V. N., Vagin J. P., Galkin K. A., Givishvili G. V., Gluhov J. V., Davidenko D. V., Zubachev D. S., Ivanov V. N., Karhov A. N., Kolomin M. V., Korshunov V. A., Lapshin V. B., Leshenko L. N., Lysenko D. A., Minligareev V. T., Morozova M. A., Perminova E. S., Portnyagin J. I., Rusakov J. S., Stal N. L., Syroeshkin A. V., Tertyshnikov A. V., Tulinov G. F., Chichaeva M. A., Chudnov¬sky V. S., Shtyrkov A. Y. (2013). Geophysical conditions at the explosion of the Chelyabinsk (Chebarkulsky) meteoroid in February 15, 2013. Moscow: FGBU "IPG" Publ. [in Russian].

2. Materials and reports of international scientific practical conference "Asteroids and comets. Chelyabinsk event and the study of meteorite falling into the lake Che¬barkul", 21- 22 June 2013, Chebarkul. [in Russian].

3. Solar System Research. (2013). 47 (4). (Thematical issue) [in Russian].

4. Atmosphere: A Handbook. (1991). Leningrad: Gidrometeoizdat, 510 p. [in Russian].

5. Borisov N. D., Gurevich A. V., Milih G. M. (1985). Artificially Ionized Region in the Atmosphere. Moscow: IZMIRAN [in Russian].

6. Bronshten V.A. (1983). Physics of Meteor Phenomena. Netherlands: Springer.
https://doi.org/10.1007/978-94-009-7222-3

7. Bronshten V. A. (1983). A magneto-hydrodynamic mechanism for generating radio waves by bright fireballs. Solar System Research. 17 (2). 70-74

8. Bronshten V.A. (1991). Electrical and electromagnetic phenomena associated with meteor flight. Solar System Research. 25 (2). 93-104.

9. Bronshten V. A. (2002). Magnetic Effect of the Tungus Meteorite. Geomagnetism and Aeronomy. 42 (6). 816-818.

10. Golitsyn G. S., Grigoriev G. I., Dokuchaev V. P. (1977). Radiation of acoustic gravity waves during the motion of meteors in the atmosphere. Izvestiya Rossiyskoy Akademii nauk. Fizika atmosfery i okeana, 13 (9), 926-936 [In Russian].

11. Goldshtein L. D., Zernov N. V. (1971). Electromagnetic fields and waves. Moscow: Sov. radio [In Russian].

12. Gurevich A. V., Shvartsburg A. B. (1973). Nonlinear theory of radio wave propagation in the ionosphere. Moscow: Nauka [In Russian].

13. Adushkin V. V., Nemchinov I. V. (eds). (2005). Catastrophic impacts of cosmic bodies. Moscow: ECC Akademkniga Publ. [in Russian].

14. Kovaleva I. H., Kovalev A. G., Popel S. I., Popova O. P. (2013). The electromagnetic effects generated in the Earth ionosphere during the meteoroid falling. Triggernyie effektyi v geosistemah. Materialy Vserossiyskogo seminara-soveschaniya. Ed.: V. V. Adushkin, G. G. Kocheryan, Moscow: GEOS, 41-50. [In Russian].

15. Kovaleva I. H., Kovalev A. G., Popova O. P. et al. (2014). The electromagnetic effects generating in the Earth ionosphere during the meteoroid falling. Dinamicheskije processy v geospherah. Vypusk 5. Geophysicheskije effekty padenija Chelyabinskogo meteoroida: sbornik nauchnyh trudov IDG RAN. Special'nyj vypusk, 26-48 (Moscow: GEOS, 2014) [in Russian].

16. Liatskij V. B. (1978). The Current Systems of the magnetospheric and ionospheric disturbances. Leningrad: Nauka [in Russian].

17. Antipin N. A., ed. (2014). The Chelyabinsk Meteorite - one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., (Chelyabinsk, 2014) (in Russian).

18. Ol'khovatov A. Yu. (1993). The electrophone sounds mechanisms generation analysis that accompany bolide effects. Geomagnetism and Aeronomy. 33 (2), 154-155 [in Russian].

19. Raizer Yu. L. (2003). A debate over the acquisition of an electric potential by a meteoroid. Solar Syst. Res. 37 (4). 333-335.
https://doi.org/10.1023/A:1025038500913

20. Soloviev S. P., Rybnov Yu. S., Kharlamov V. A. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. Triggernyie effekty v geosistemah. Materialyi tretego Vserossiyskogo seminara-soveschaniya. Pod red. V. V. Adushkina, G. G. Kocheryana, 317-326 (GEOS, Moskva, 2015) [in Russian].

21. Surkov V. V. Electromagnetic effects caused by earthquakes and explosions, 448 p. (MEPhI, Moscow, 2000) [in Russian].

22. Chernogor L. F. Physics of Earth, atmosphere, and geospace from the standpoint of system paradigm. Radiophyzika i Radioastronomija. 8 (1), 59-106 (2003) [in Russian].

23. Chernogor L. F. Earth - atmosphere - ionosphere - magnetosphere as opened dynamic nonlinear physical system. 1. Nelinejnyj mir. 4 (12). 655-697 (2006) [in Russian].

24. Chernogor L. F. Earth - atmosphere - ionosphere - magnetosphere as opened dynamic nonlinear physical system. 2. Nelinejnyj mir. 5 (4). 225-246 (2007) [in Russian].

25. Chernogor L. F. (2008). On the nonlinearity in nature and science. Kharkiv: V. N. Karazin Kharkiv National University [in Russian].

26. Chernogor L. F. (2010). The ways in which variations in space and tropospheric weather impact the biosphere (humans). Phyzyologichnyj journal. 56 (3). 25-40 [in Russian].
https://doi.org/10.15407/fz56.03.025

27. Chernogor L. F. (2011). Oscillations of the geomagnetic field caused by the flight of Vitim bolide on September 24, 2002. Geomagnetism and Aeronomy. 51 (1), 116-130.
https://doi.org/10.1134/S0016793211010038

28. Chernogor L. F. (2012). Physics and ecology of disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

29. Chernogor L. F. (2013). Large-scale disturbances in the Earth's magnetic field associated with the Chelyabinsk meteorite event. Radiophizika i electronica. 4 (18) (3), 47-54 [in Russian].

30. Chernogor L. F. (2013). Plasma, electromagnetic and acoustic effects of meteorite «Chelyabinsk». Engineering Physics. 8, 23-40 [in Russian].

31. Chernogor L. F. (2013). Physical effects of the Chelyabinsk meteorite passage. Do¬po¬vіdі Natsіonalnoi akademіi nauk Ukrainy. 10, 97-104 [in Russian].

32. Chernogor L. F. (2014). Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 54 (5), 613-624.
https://doi.org/10.1134/S001679321405003X

33. Chernogor L. F. (2014). Physics of high-power radio emissions in geospace: monograph. Kharkiv: V. N. Karazin Kharkiv National University [in Russian].

34. Chernogor L. F. (2015). Ionospheric effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 55, No. 3, 353-368.
https://doi.org/10.1134/S0016793215030044

35. Chernogor L. F. (2017). Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body. Cosmic Research. 55 (5), 323-332.
https://doi.org/10.1134/S0010952517050033

36. Chernogor L. F. (2018). Physical effects of the Romanian meteoroid. 1. Space Science and Technology. 24 (1), 49-70 [in Russian].
https://doi.org/10.15407/knit2018.01.049

37. Chernogor L. F. (2018). Physical effects of the Romanian meteoroid. 2. Space Science and Technology. 24 (2), 18-35 [in Russian].
https://doi.org/10.15407/knit2018.02.018

38. Chernogor L. F. (2018). Magnetospheric effects during the approach of the Chelya¬binsk meteoroid. Geomagnetism and Aeronomy. 58 (2), 252-265.
https://doi.org/10.1134/S0016793218020044

39. Chernogor L. F. (2019). The physical effects of Lipetsk meteoroid. 1. Kinematics and Phys. Celestial Bodies. 35 (4). 37-59.
https://doi.org/10.15407/kfnt2019.04.037

40. Chernogor L. F. (2019). The physical effects of Lipetsk meteoroid. 2. Kinematics and Phys. Celestial Bodies. 35 (5) 25-47.
https://doi.org/10.15407/kfnt2019.05.025

41. Chernogor L. F., Barabash V. V. (2014). Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinematics and Phys. Celestial Bodies. 30 (3), 126-136.
https://doi.org/10.3103/S0884591314030039

42. Chernogor L. F., Garmash K. P. (2013). Disturbances in geospace associated with the Chelyabinsk meteorite passage. Radio Phys. Radio Astron. 18 (3), 231-243 [In Rus¬sian].

43. Chernogor L. F. (2022). Physical effects from the Yushu meteoroid. 1. Kinematics and Phys. Celestial Bodies. 38 (3). С. 20-46.
https://doi.org/10.15407/kfnt2022.03.020

44. Chernogor L. F. (2022). Physical effects from the Yushu meteoroid. 2. Kinematics and Phys. Celestial Bodies. [In Press].
https://doi.org/10.15407/kfnt2022.03.020

45. Chernogor L. F., Milovanov Yu. B., Fedorenko V. N., Tsymbal A. M. (2013). Satellite observations of ionospheric disturbances which followed the Chelyabinsk meteorite passage. Space Sci. and Technol. 19 (6), 38-46 [in Russian].
https://doi.org/10.15407/knit2013.06.038

46. Beech M., Foschini L. A. (1999). A space charge model for electrophonic bursters. Astron. and Astrophys. 345, L27-L31.

47. Beech M., Brown P., Jones J. (1995). VLF detection of fireballs. Earth, Moon, and Planets. 68, 181-188.
https://doi.org/10.1007/BF00671507

48. Brown P., Spalding R. E., Re Velle D. O., et al. (2002). The flux of small near-Earth objects colliding with Earth. Nature. 420, 294-296.
https://doi.org/10.1038/nature01238

49. Chernogor L. F., Rozumenko V. Т. (2008). Earth - atmosphere - geospace as an open nonlinear dynamical system. Radio Physics and Radio Astronomy. 13 (2), 120-137.

50. Chernogor L. F. (2011). The Earth - atmosphere - geospace system: main properties and processes. Int. J. Remote Sensing. 32 (11). 3199-3218.
https://doi.org/10.1080/01431161.2010.541510

51. Chernogor L. F., Rozumenko V. T. (2013). The physical effects associated with Chelyabinsk meteorite's passage. Probl. Atomic Sci. and Technol. 86 (4). 136-139.

52. Le Pichon A., Blanc E., Hauchecorne A. (Eds). (2010). Infrasound monitoring for atmospheric studies. Dordrecht Heidelberg London New York: Springer.
https://doi.org/10.1007/978-1-4020-9508-5

53. Kaznev V. Y. (1994). Observational characteristics of electrophonic bolides: Statistical analysis. Solar Syst. Res. 28, 49-60.

54. Keay C. S. L. (1980). Anomalous sounds from the entry of meteor fireballs. Science. 210, 11-15.
https://doi.org/10.1126/science.210.4465.11

55. Keay C. S. L. (1980). Audible sounds excited by aurorae and meteor fireballs. J. Roy. Astron. Soc. Can. 74, 253-260.

56. Keay C. S. L. (1991, 1992). Meteor fireball sounds identified. Asteroids, Comets, Meteors. 297-300.

57. Keay C. S. L. (1992). Electrophonic sounds from large meteor fireballs. Meteoritics. 27, 144-148.
https://doi.org/10.1111/j.1945-5100.1992.tb00741.x

58. Keay C. S. L. (1994). Electrophonic sounds catalog. WGN Obs. Rep. Ser. Int. Meteor. Org. 6, 151-172.

59. Keay C. S. L., Ceplecha Z. (1994). Rate of observation of electrophonic meteor fireballs. J. Geophys. Res. 99, 13,163-13,165.
https://doi.org/10.1029/94JE01092

60. Popel S. I. (1997). Electromagnetic effects in the Earth's ionosphere and magnetosphere caused by a cosmic body. Planet. Space Sci. 45 (7), 869-875.
https://doi.org/10.1016/S0032-0633(97)00066-4

61. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochan¬tsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Koma¬tsu M., Mikouchi T. (2013). Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 342. 1069-1073.
https://doi.org/10.1126/science.1242642

62. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Koma¬tsu M., Mikouchi T. (2013). Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. 146.
https://doi.org/10.1126/science.1242642

63. Popova O. (2021). Chelyabinsk Meteorite. Oxford research encyclopedia of planetary science.
https://doi.org/10.1093/acrefore/9780190647926.013.22

64. Zalyubovsky I. I., Chernogor L. F., Rozumenko V. T. (2008). The Earth - atmosphere - geospace system: main properties, processes and phenomena. Space Research in Ukraine. 2006-2008. Kyiv, 19-29.