Structure of the long-living elements of the solar granulation

Heading: 
1Baran, OA, 1Stodilka, MI, 1Prysiazhnyi, AI
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2018, 34(1):21-29
https://doi.org/10.15407/kfnt2018.01.021
Start Page: Solar Physics
Language: Ukrainian
Abstract: 

Spatial and temporal variations of thermodynamic and kinematic parameters of structural elements of the solar granulation are investigated using data of observations on VTT (duration of observations 2.6 hours) by the solution of the inverse nonequilibrium radiative transfer problem. In the lower photosphere we have detected long-living (with lifetime up to 1.5 h) structures — trees of fragmenting granules. They occur as a result of the fission process of an upward granular flow into several fragments and it can be repeated several times. We have found that about 67 % of areas with the highest positive variations of pressure correspond to the time and place of fragmentation of granular flows, approximately 12 % of areas correspond to the approaching of adjacent structures.

Keywords: granule trees, photosphere, the Sun
References: 

1.O. A. Baran and M. I. Stodilka, “Convection structure in the solar photosphere at granulation and mesogranulation scales,” Kinematics Phys. Celestial Bodies 31, 65–72 (2015).
https://doi.org/10.3103/S0884591315020026

2.O. A. Baran and M. I. Stodilka, “The development of convective structures in the solar photosphere,” Visn. Kyiv. Nats. Univ. im. Tarasa Shevchenka. Astron, No. 2, 46–48 (2016).
https://doi.org/10.17721/BTSNUA.2016.54.46-48

3.M. I. Stodilka and O. A. Baran, “Structure of the solar photospheric convection on subgranulation scales,” Kinematics Phys. Celestial Bodies 24, 70–76 (2008).
https://doi.org/10.3103/S0884591308020025

4.M. I. Stodilka, O. A. Baran, and S. Z. Malinich, “Peculiarities of the convection in the solar photosphere,” Kinematics Phys. Celestial Bodies 22, 134–141 (2006).

5.M. I. Stodilka, “The inverse problem for a study of solar and stellar atmosphere inhomogeneities,” Zh. Fiz. Dosl. 6, 435–442 (2002).

6.O. A. Baran, “Structure of convective flows of the real solar granulation,” in Proc. 17th Young Scientists’ Conf. on Astronomy and Space Physics, Kyiv, Apr. 26–May 1, 2010; Adv. Astron. Space Phys. 1, 53–56 (2011).

7.O. A. Baran and M. I. Stodilka, “Convective pressure variations in the solar photosphere,” in Proc. Astronomy and Space Physics, Annual Int. Conf., Kyiv, May 25–29, 2014 (Kyiv. Nats. Univ. im. T. Shevchenka, Kyiv, 2015), p. 32.

8.A. S. Gadun, A. Hanslmeier, K. N. Pikalov, S. R. O. Plotter, K. G. Puschmann, and S. K. Solanki, “Sizedependent properties of simulated 2-D solar granulation,” Astron. Astrophys. Suppl. Ser. 146, 267–291 (2000).
https://doi.org/10.1051/aas:2000271

9.J. Hirzberger, J. A. Bonet, M. Vazquez, and A. Hanslmeier, “Time series of solar granulation images. II. Evolution of individual granules,” Astrophys. J. 515, 441–454 (1999).
https://doi.org/10.1086/307018

10.N. E. Hurlburt, J. Toomre, and J. M. Massaguer, “Two-dimensional compressible convection extending over multiple scale heights,” Astrophys. J. 282, 557–573 (1984).
https://doi.org/10.1086/162235

11.R. Kostik, E. Khomenko, and N. Shchukina, “Solar granulation from photosphere to low chromosphere observed in BaII 4554 Å line,” Astron. Astrophys. 506, 1405–1414 (2009).
https://doi.org/10.1051/0004-6361/200912441

12.R. I. Kostyk and N. G. Shchukina, “Fine structure of convective motions in the solar photosphere: Observations and theory,” Astron. Rep. 48, 769–780 (2004).
https://doi.org/10.1134/1.1800177

13.J.-M. Malherbe, T. Roudier, Z. Frank, and M. Rieutord, “Families of granules, flows, and acoustic events in the solar atmosphere from Hinode observations,” Sol. Phys. 290, 321–333 (2015).
https://doi.org/10.1007/s11207-014-0630-7

14.J. M. Massaguer and J.-P. Zahn, “Cellular convection in a stratified atmosphere,” Astron. Astrophys. 87, 315–327 (1980).

15.J. P. Mehltretter, “Balloon-borne imagery of the solar granulation. II. The lifetime of solar granulation,” Astron. Astrophys. 62, 311–316 (1978).

16.Å. Nordlund, R. F. Stein, and M. Asplund, “Solar surface convection,” Living Rev. Sol. Phys. 6 (2), 1–117 (2009).
https://doi.org/10.12942/lrsp-2009-2

17.L. J. November, J. Toomre, K. V. Gebbie, and G. W. Simon, “The detection of mesogranulation on the Sun,” Astrophys. J., Part 2 — Lett. 245, L123–L126 (1981).
https://doi.org/10.1086/183539

18.S. R. O. Ploner, S. K. Solanki, and A. S. Gadun, “The evolution of solar granules deduced from 2-D simulations,” Astron. Astrophys. 352, 679–696 (1999).

19.K. Puschmann, V. Ruiz Cobo, M. Vázquez, J. A. Bonet, and A. Hanslmeier, “Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures,” Astron. Astrophys. 441, 1157–1169 (2005).
https://doi.org/10.1051/0004-6361:20047193

20.M. Rieutord and F. Rincon, “The Sun’s supergranulation,” Living Rev. Sol. Phys. 7 (2), 1–82 (2010).
https://doi.org/10.12942/lrsp-2010-2

21.Th. Roudier, F. Lignières, M. Rieutord, P. N. Brandt, and J. M. Malherbe, “Families of fragmenting granules and their relation to meso- and supergranular flow fields,” Astron. Astrophys. 409, 299–308 (2003).
https://doi.org/10.1051/0004-6361:20030988

22.Th. Roudier, J.-M. Malherbe, M. Rieutord, and Z. Frank, “Relation between trees of fragmenting granules and supergranulation evolution,” Astron. Astrophys. 590, A121 (2016).
https://doi.org/10.1051/0004-6361/201628111

23.Th. Roudier and R. Muller, “Relation between families of granules, mesogranules and photospheric network,” Astron. Astrophys. 419, 757–762 (2004).
https://doi.org/10.1051/0004-6361:20035739

24.R. F. Stein and Å. Nordlund, “Simulations of solar granulation. I. General properties,” Astrophys. J. 499, 914–933 (1998).
https://doi.org/10.1086/305678

25.A. M. Title, T. D. Tarbell, K. P. Topka, S. H. Ferguson, and R. A. Shine, “Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2,” Astrophys. J. 336, 475–494 (1989).
https://doi.org/10.1086/167026

26.J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III — Models of the EUV brightness components of the quiet-sun,” Astrophys. J. Suppl. Ser. 45, 635–725 (1981).
https://doi.org/10.1086/190731