Iron abundance in the atmosphere of Arcturus
1Sheminova, VA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2015, 31(4):21-38 |
Start Page: Physics of Stars and Interstellar Medium |
Language: Russian |
Abstract: Determination of iron abundance in the atmosphere of Arcturus is performed using the profiles or profile portions of the weak lines sensitive to iron abundance. On the basis of the spectral atlas of Hinkle and Wallance (2005) with high spectral resolution and the synthesis of selected Fe I and Fe II lines within the MARCS model atmospheres, we got the iron abundance A = 6.95 ± 0.03 and the radial-tangential macroturbulent velocity 5.6 ± 0.2 km/sec for Arcturus and A = 7.42 ± 0.02 and 3.4 ± 0.3 km/s for the Sun as a star. For Arcturus we obtained the iron abundance relative to the solar abundance [Fe/H] = –0.48 ± 0.02. |
Keywords: Arcturus, atmosphere |
1.A. S. Gadun and V. A. Sheminova, SPANSAT: A Program for Calculating Profiles of Spectral Absorption Lines in Stellar Atmospheres in LTR Aprroximation, Preprint ???-88-87? (Theor. Phys. Inst. Akad. Sci. Ukr. SSR, Kiev, 1988) [in Russian].
2.E. A. Gurtovenko and V. A. Sheminova, Depths of Formation of Fraunhofer Lines, Preprint ???-97-1? (Main Astrophys. Obs., National Akad. Sci. Ukr., Kiev, 1997) [in Russian].
3.V. A. Sheminova, “Temperature stratification of the atmosphere of Arcturus,” Kinematics Phys. Celestial Bodies 29, 176–194 (2013).
https://doi.org/10.3103/S0884591313040041
4.V. A. Sheminova and A. S. Gadun, “Fourier analysis of Fe I lines in spectra of Sun, alpha Centauri A, Procyon, Arcturus and Canopus,” Kinematics Phys. Celestial Bodies 14, 169–179 (1998).
5.V. A. Sheminova and A. S. Gadun, “Convective shifts of iron lines in the solar photosphere,” Kinematics Phys. Celestial Bodies 18, 12–20 (2002).
6.C. Allende Prieto, M. Asplund, R. J. Garcia López, and D. L. Lambert, “Signatures of convection in the spectrum of Procyon: Fundamental parameters and iron abundance,” Astrophys. J. 567, 544–565 (2002).
https://doi.org/10.1086/338248
7.M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
https://doi.org/10.1146/annurev.astro.46.060407.145222
8.E. Caffau, H.-G. Ludwig, and M. Steffen, “Solar abundances and granulation effects,” Mem. Soc. Astron. Ital. 80, 643–647 (2009).
9.E. Caffau, H.-G. Ludwig, M. Steffen, et al., “Solar chemical abundances determined with a CO5BOLD 3D model atmosphere,” Sol. Phys. 268, 255–269 (2011).
https://doi.org/10.1007/s11207-010-9541-4
10.P. S. Barklem and J. Aspelund-Johansson, “The broadening of Fe II lines by neutral hydrogen collisions,” Astron. Astrophys. 435, 373–377 (2005).
https://doi.org/10.1051/0004-6361:20042469
11.P. S. Barklem, N. Piskunov, and B. J. O’Mara, “A list of data for the broadening of metallic lines by neutral hydrogen collisions,” Astron. Astrophys., Suppl. Ser. 142, 467–473 (2000).
https://doi.org/10.1051/aas:2000167
12.M. Bergemann, K. Lind, R. Kollet, et al., “Non-LTE line formation of Fe in late-type stars I. Standard stars with 1D and 3D model atmospheres,” Mon. Not. R. Astron. Soc. 427, 27–49 (2012).
https://doi.org/10.1111/j.1365-2966.2012.21687.x
13.D. H. Bruning, “The applicability of the Fourier convolution theorem to the analysis of late-type stellar spectra,” Astrophys. J. 281, 830–838 (1984).
https://doi.org/10.1086/162162
14.D. Dravins, L. Lindegren, and A. Nordlund, “Solar granulation — Influence of convection on spectral line asymmetries and wavelength shifts,” Astron. Astrophys. 96, 345–364 (1981).
15.J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. Chem. Ref. Data 35, 1669–1809 (2006).
https://doi.org/10.1063/1.2218876
16.J. P. Fulbright, A. McWilliam, and R. M. Rich, “Abundances of Baade’s window giants from Keck HIRES Spectra. I. Stellar parameters and [Fe/H] values,” Astron. Astrophys. 636, 821–841 (2006).
17.J. P. Fulbright, A. McWilliam, and R. M. Rich, “Abundances of Baade’s window giants from Keck HIRES Spectra. II. The alpha and light odd elements,” Astron. Astrophys. 661, 1152–1179 (2007).
18.T. Gehren, K. Butler, L. Mashonkina, et al., “Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. I. The solar strong line spectrum,” Astron. Astrophys. 366, 981–1002 (2001).
https://doi.org/10.1051/0004-6361:20000287
19.T. Gehren, A. J. Korn, and J. Shi, “Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. II. Weak Fe I lines in the solar spectrum,” Astron. Astrophys. 380, 645–664 (2001).
https://doi.org/10.1051/0004-6361:20011479
20.D. F. Gray, “Atmospheric turbulence measured in stars above the main sequence,” Astrophys. J. 202, 148–164 (1975).
https://doi.org/10.1086/153960
21.D. F. Gray, “A test of the micro-macroturbulence model on the solar flux spectrum,” Astrophys. J. 218, 530–538 (1977).
https://doi.org/10.1086/155706
22.D. F. Gray, “An analysis of the spectral line broadening of Arcturus,” Astrophys. J. 245, 992–997 (1981).
https://doi.org/10.1086/158876
23.D. F. Gray, “The Temperature dependence of rotation and turbulence in giant stars,” Astrophys. J. 262, 682–699 (1982).
https://doi.org/10.1086/160461
24.D. F. Gray and K. I. T. Brown, “The rotation of Arcturus and active longitudes on giant stars,” Publ. Astron. Soc. Pac. 118, 1112–1118 (2006).
https://doi.org/10.1086/507077
25.B. Gustafsson, B. Edvardsson, K. Eriksson, et al., “A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties,” Astron. Astrophys. 486, 951–970 (2008).
https://doi.org/10.1051/0004-6361:200809724
26.K. Hinkle and L. Wallace, The spectrum of Arcturus from the infrared through the ultraviolet,” Astron. Soc. Pac. Conf. Ser. 336, 321 (2005);(Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Ed. by T.G. Barnes and F.N. Bash).
27.H. Holweger and E. Mueller, “A the photospheric barium spectrum Solar abundance and collision broadening of Ba II lines by hydrogen,” Sol. Phys. 39, 19–30 (1974).
https://doi.org/10.1007/BF00154968
28.R. Holzreuter and S. K. Solanki, “Three-dimensional non-LTE radiative transfer effects in Fe I lines. II. Line formation in 3D radiation hydrodynamic simulations,” Astron. Astrophys. 558, A20 (2013).
29.F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., “VALD-2: Progress of the Vienna atomic line data base,” Astron. Astrophys., Suppl. Ser. 138, 119–133 (1999).
https://doi.org/10.1051/aas:1999267
30.L. Mashonkina, T. Gehren, J.-R. Shi, et al., “A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars,” Astron. Astrophys. 528, A87 (2011).
https://doi.org/10.1051/0004-6361/201015336
31.A. McWilliam, G. Wallerstein, and M. Mottini, “Chemistry of the sagittarius dwarf Galaxy: A top-light initial mass function, outflows, and the R-process,” Astrophys. J. 778, 149 (2013).
https://doi.org/10.1088/0004-637X/778/2/149
32.J. Melendez and B. Barbuy, “Both accurate and precise gf-values for Fe II lines,” Astron. Astrophys. 497, 611–617 (2009).
https://doi.org/10.1051/0004-6361/200811508
33.I. Ramirez and C. Allende Prieto, “Fundamental parameters and chemical composition of Arcturus,” Astrophys. J. 743, 135–149 (2011).
https://doi.org/10.1088/0004-637X/743/2/135
34.P. Scott, M. Asplund, N. Grevesse, et al., “The elemental composition of the Sun. II. The iron group elements Sc to Ni,” Astron. Astrophys. 537, A26 (2015).
https://doi.org/10.1051/0004-6361/201424110
35.V. A. Sheminova and C. R. Cowley, “Abundance sensitive points of line profiles in the stellar spectra,” Mon. Not. R. Astron. Soc. 443, 1967–1972 (2014).
https://doi.org/10.1093/mnras/stu1269
36.M. Steffen, E. Caffau, and H.-G. Ludwig, “Micro- and macroturbulence predictions from CO5BOLD 3D stellar atmospheres,” Mem. Soc. Astron. Ital. Suppl. 24, 37–52 (2013).
37.Y. Takeda, “Analyses of line profiles in the solar flux spectrum for determining rotation and micro/macro turbulence,” Publ. Astron. Soc. Jap. 47, 337–354 (1995).
38.T. Tsuji, “The K giant star Arcturus: the hybrids nature of its infrared spectrum,” Astron. Astrophys. 504, 543–559 (2009).
https://doi.org/10.1051/0004-6361/200912323