On the structure of azimuthally small-scale ULF oscillations of hot space plasma in curved magnetic field. Modes with continuous spectrum

Heading: 
1Cheremnykh, OK, 2Klimushkin, DY, 2Kostarev, DV
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
2Institute of Solar-Terrestrial Physics of the Siberian Branch of the RAS, Irkutsk, Russia
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(5):3-21
Start Page: Space Physics
Language: Russian
Abstract: 

The problem of azimuthally small-scale ULF modes’ propagation in plasma with 1D inhomogeneity and variable magnetic field lines’ curvature is analyzed. The propagation areas and the transverse structure of stable Alfven and cusp modes, as well as unstable ballooning modes, are determined. It is shown that long-living ballooning and cusp modes can exist. Our results qualitatively describe the behaviour of ULF modes with continuous spectrum in the terrestrial magnetosphere and can be used to interpret the data of spacecraft and SuperDARN radar measurements.

Keywords: magnetic field, plasma, ULF oscillations
References: 

1.A. V. Agapitov, A. S. Parnovskii, and O. K. Cheremnykh, “Spectrum of transverse small-scale disturbances in the Earth’s inner magnetosphere,” Kinematika Fiz. Nebesnykh Tel 22(6), 387–401 (2006).

2.A. V. Agapitov and O. K. Cheremnykh, “Generation of natural ULF modes of the Earth’s magnetosphere by solar wind,” Kosm. Nauka Tekhnol. 14(4), 72–81 (2008).

3.A. V. Agapitov and O. K. Cheremnykh, “Polarization of ULF waves in the Earth’s magnetosphere,” Kinematics Phys. Celestial Bodies 27(3), 117–123 (2011).
https://doi.org/10.3103/S0884591311030020

4.V. B. Belakhovskii and V. K. Roldugin, “Generation of Pc5 pulsations during the sign reversal of the IMF Bz-component,” Geomagn. Aeron. (Engl. Transl.) 48(2), 180–186 (2008).
https://doi.org/10.1134/S0016793208020072

5.M. Gussens, “MHD waves and wave heating in nonuniform plasmas,” in Advances in Solar System Magnetohydrodynamics (Cambridge University Press, Cambridge, 1991).

6.N. A. Zolotukhina, “Resonance properties of Psi5/Psc5 in geostationary orbit,” Geomagn. Aeron. (Engl. Transl.) 49(4), 438–449 (2009).
https://doi.org/10.1134/S0016793209040033

7.B. B. Kadomtsev, “Hydromagnetic plasma stability,” in Questions of the Plasma Theory, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963) [in Russian].

8.B. B. Kadomtsev, Collective Phenomena in Plasma (Nauka, Moscow, 1988) [in Russina].

9.D. Yu. Klimushkin, “Spatial structure of azimuthally small-scale hydromagnetic waves in the axially symmetrical magnetosphere with a finite plasma pressure,” Fiz. Plazmy 23(10), 931–944 (1997).

10.V. A. Mazur and D. A. Chuiko, “Influence of the outer-magnetospheric magnetohydrodynamic waveguide on the reflection of hydromagnetic waves from a shear flow at the magnetopause,” Plasma Phys. Rep. 39(12), 959–975 (2013).
https://doi.org/10.1134/S1063780X13120064

11.N. G. Mazur, E. N. Fedorov, and V. A. Pilipenko, “On the possibility of reflection of Alfven waves in a curvilinear magnetic field,” Fiz. Plazmy 30(5), 413–421 (2004).

12.N. G. Mazur, E. N. Fedorov, and V. A. Pilipenko, “Dispersion relation for ballooning modes and condition of their stability in the near-earth plasma,” Geomagn. Aeron. (Engl. Transl.) 52(5), 603–612 (2012).
https://doi.org/10.1134/S0016793212050118

13.A. S. Parnovskii and O. K. Cheremnykh, “Spectrum of ballooning perturbations with arbitrary polarization in the inner magnetosphere of the Earth,” Kosm. Nauka Tekhnol. 12(1), 49–56 (2006).

14.A. S. Parnovskii and O. K. Cheremnykh, “Flute and incompressible perturbations in the inner magnetosphere of the Earth,” Kinematika Fiz. Nebesnykh Tel 22(1), 65–75 (2006).

15.R. V. Polovin and V. P. Demutskii, Magnetic Hydrodynamics Foundations (Energoatomizdat, Moscow, 1987) [in Russian].

16.O. K. Cheremnykh and V. V. Danilova, “Transversal small-scale MHD perturbations in space plasma with magnetic surfaces,” Kinematics Phys. Celestial Bodies 27(2), 98–108 (2011).
https://doi.org/10.3103/S0884591311020036

17.S. H. Bekhor, “The computation of field-line resonance frequencies in general geometries: A tool for improving the understanding of magnetospheric configurations,” J. Plas. Phys. 72, 309–327 (2006). doi: 10.1017/S0022377805004150
https://doi.org/10.1017/S0022377805004150

18.L. Chen and A. Hasegawa, “A theory of long period magnetic pulsations. 1. Steady state excitation of filed line resonance,” J. Geophys. Res. 79, 1024–1032 (1974). doi: 10.1029/JA079i007p01024
https://doi.org/10.1029/JA079i007p01024

19.C. Z. Cheng, “MHD field line resonances and global modes in three-dimensional magnetic fields,” J. Geophys. Res. 108A (1), 1002 (2003). doi: 10.1029/2002JA009470
https://doi.org/10.1029/2002JA009470

20.C. Z. Cheng, T. C. Chang, C. A. Lin, and W. H. Tsai, “Magnetohydrodynamic theory of field line resonances in the magnetosphere,” J. Geophys. Res. 98A(7), 11339–11347 (1993). doi: 10.1029/93JA00505
https://doi.org/10.1029/93JA00505

21.O. K. Cheremnykh and A. S. Parnowski, “The theory of ballooning perturbations in the inner magnetosphere of the earth,” Adv. Space Res. 33, 769–773 (2004). doi: 10.1016/S0273-1177(03)00642-2
https://doi.org/10.1016/S0273-1177(03)00642-2

22.O. K. Cheremnykh and A. S. Parnowski, “Flute and ballooning modes in the inner magnetosphere of the Earth: Stability and influence of the ionospheric conductivity,” in Space Science: New Research, Ed. by N. S. Maravell (Nova Science Publishers, New York, 2006), pp. 71–108.

23.O. K. Cheremnykh and A. S. Parnowski, “Influence of ionospheric conductivity on the ballooning modes in the inner magnetosphere of the Earth,” Adv. Space Res. 37(3), 599–603 (2006). doi: 10.1016/j.asr.2005.01.073
https://doi.org/10.1016/j.asr.2005.01.073

24.O. K. Cheremnykh, A. S. Parnowski, and O. S. Burdo, “Ballooning modes in the inner magnetosphere of the Earth,” Planet. Space Sci. 55(13), 1217–1229 (2004). doi: 10.1016/j.bbr.2011.03.031
https://doi.org/10.1016/j.pss.2004.07.014

25.I. S. Dmitrienko, “Evolution of FMS and Alfven waves produced by the initial disturbance in the FMS waveguide,” J. Plas. Phys. 79, 7–17 (2013). doi: 10.1017/S0022377812000608
https://doi.org/10.1017/S0022377812000608

26.A. V. Guglielmi and A. S. Potapov, “Note on the Dependence of Pc3-4 Activity on the Solar Wind Velocity,” Ann. Geophys. 12, 1192–1196 (1994). doi: 10.1007/s00585-994-1192-z

27.K. Kabin, R. Rankin, I. R. Mann, et al., “Polarization properties of standing shear alfven waves in non-asisymmetric background magnetic fields,” Ann. Geophys. 25, 815–822 (2007). doi: 10.5194/angeo-25-815-2007
https://doi.org/10.5194/angeo-25-815-2007

28.D. Yu. Klimushkin, “Spatial structure of transversally small-scale hydromagnetic waves in a plane finite-beta model magnetosphere,” Planet. Space Sci. 45, 269–279 (1997). doi: 10.1016/S0032-0633(96)00078-5
https://doi.org/10.1016/S0032-0633(96)00078-5

29.D. Yu. Klimushkin, A. S. Leonovich, and V. A. Mazur, “On the propagation of transversally-small-scale standing Alfven waves in a three-dimensionally inhomogeneous magnetosphere,” J. Geophys. Res. 100A(6), 9527–9534 (1995). doi: 10.1029/94JA03233
https://doi.org/10.1029/94JA03233

30.D. Yu. Klimushkin and P. N. Mager, “On the spatial structure and dispersion of slow magnetosonic modes coupled with Alfven modes in planetary magnetospheres due to field line curvature,” Planet. Space Sci. 56, 1273–1279 (2008). doi: 10.1016/j.pss.2008.03.002
https://doi.org/10.1016/j.pss.2008.03.002

31.D. Yu. Klimushkin and P. N. Mager, “Spatial structure and stability of coupled Alfven and drift compressional modes in non-uniform magnetosphere: Gyrokinetic treatment,” Planet. Space Sci. 59, 1613–1620 (2011). doi: 10.1016/j.pss.2011.07.010
https://doi.org/10.1016/j.pss.2011.07.010

32.D. Yu. Klimushkin, P. N. Mager, and O. S. Marilovtseva, “Parallel strucrure of Pc1 ULF oscillations in multiion magnetospheric plasma at finite ion gyrofrequency,” J. Atmos. and Sol.-Terr. Phys 72(18), 1327–1332 (2010). doi: 10.1016/j.jastp.2010.09.019
https://doi.org/10.1016/j.jastp.2010.09.019

33.D. Yu. Klimushkin, P. N. Mager, and V. A. Pilipenko, “On the ballooning instability of the coupled Alfven and drift compressional modes,” Earth Planets Space 64, 777–781 (2012). doi: 10.5047/eps.2012.04.002
https://doi.org/10.5047/eps.2012.04.002

34.D. A. Kozlov, “Slow Magnetosonic Oscillations with m ≫ 1 in a dipole magnetosphere with rotating plasma,” Int. J. Geomagn. Aeron 7 (2008). doi: 10.1029/2006GI000164

35.D. A. Kozlov, N. G. Mazur, V. A. Pilipenko, and E. N. Deforov, “Dispersion equation for ballooning modes in two-component plasma,” J. Plas. Phys. 80(3), 379–393 (2014).
https://doi.org/10.1017/S0022377813001347

36.A. S. Leonovich and D. A. Kozlov, “On ballooning instability in current sheets,” Plasma Phys. Controlled Fusion 55, 085013 (2013). doi: 10.1088/0741-3335/55/8/085013
https://doi.org/10.1088/0741-3335/55/8/085013

37.A. S. Leonovich, D. A. Kozlov, and I. K. Edemskiy, “Standing slow magnetosonic waves in a dipole-like plasmasphere,” Planet. Space Sci. 58, 1425–1433 (2010). doi: 10.1016/j.pss.2010.06.007
https://doi.org/10.1016/j.pss.2010.06.007

38.A. S. Leonovich and V. A. Mazur, “A Theory of transverse small-scale standing Alfven waves in an axially symmetric magnetosphere,” Planet. Space Sci. 41, 697–717 (1993). doi: 10.1016/0032-0633(93)90055-7
https://doi.org/10.1016/0032-0633(93)90055-7

39.A. S. Leonovich and V. A. Mazur, “A Model equation for monochromatic standing Alfven waves in the axially symmetric magnetosphere,” J. Geophys. Res. 102, 11443–11456 (1997). doi: 10.1029/96JA02523
https://doi.org/10.1029/96JA02523

40.A. S. Leonovich and V. A. Mazur, “Structure of magnetosonic eigenoscillations of an axisymmetric magnetosphere,” J. Geophys. Res. 105, 27707–27716 (2000). doi: 10.1029/2000JA900108
https://doi.org/10.1029/2000JA900108

41.P. N. Mager and D. Yu. Klimushkin, “Theory of azimuthally small-scale Alfven waves in an axisymmetric magnetosphere with small but finite plasma pressure,” J. Geophys. Res. 107(A11), 1356 (2002). doi: 10.1029/2001JA009137
https://doi.org/10.1029/2001JA009137

42.P. N. Mager and D. Yu. Klimushkin, “Alfven ship waves: High-m ULF pulsations in the magnetosphere generated by a moving plasma inhomogeneity,” Ann. Geophys. 26, 1653–1663 (2008). doi: 10.5194/angeo-26-1653-2008
https://doi.org/10.5194/angeo-26-1653-2008

43.P. N. Mager, D. Yu. Klimushkin, and D. V. Kostarev, “Drift-compressional modes generated by inverted plasma distributions in the magnetosphere,” J. Geophys. Res. Space Phys. 118, 4915–4923 (2013). doi: 10.1002/jgra.50471
https://doi.org/10.1002/jgra.50471

44.P. N. Mager, D. Yu. Klimushkin, V. A. Pilipenko, and S. Schafe, “Field-aligned structure of poloidal Alfven waves in a finite pressure plasma,” Ann. Geophys. 27, 3875–3882 (2009). doi: 10.5194/angeo-27-3875-2009
https://doi.org/10.5194/angeo-27-3875-2009

45.A. S. Parnowski, “Eigenmode analysis of ballooning perturbations in the inner magnetosphere of the earth,” Ann. Geophys. 25, 1391–1403 (2007). doi: 10.5194/angeo-25-1391-2007
https://doi.org/10.5194/angeo-25-1391-2007

46.V. A. Pilipenko, O. V. Kozyreva, M. J. Engebretson, et al., “Dynamics of long-period magnetic activity and energetic particle precipitation during the May 15, 1997 storm,” J. Atmos. Sol.-Terr. Phys. 64, 831–843 (2002). doi: 10.1016/S1364-6826(02)00074-3
https://doi.org/10.1016/S1364-6826(02)00074-3

47.S. Schäfer, K.-H. Glassmeier, P. T. I. Eriksson, et al., “Spatio-temporal structure of a poloidal Alfven wave detected by cluster adjacent to the dayside plasmapause,” Ann. Geophys. 26, 1805–1817 (2008). doi: 10.5194/angeo-26-1805-2008
https://doi.org/10.5194/angeo-26-1805-2008

48.D. J. Southwood, “Some features of field line resonances in the magnetosphere,” Planet. Space Sci. 22, 483–491 (1974). doi: 10.1016/0032-0633(74)90078-6
https://doi.org/10.1016/0032-0633(74)90078-6

49.T. K. Yeoman, M. James, P. N. Mager, and D. Yu. Klimushkin, “SuperRARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory,” J. Geophys. Res. 117, A06231 (2012). doi: 10.1029/2012JA017668.

50.N. A. Zolotukhina, “Wave effects of sudden impulse and substorm onset in the magnetospheric morning sector on January 4, 2001,” Geomagn. Aeron. (Engl. Transl.) 50(8), 963–969 (2010). doi: 10.1134/S0016793210080062
https://doi.org/10.1134/S0016793210080062

51.N. A. Zolotukhina, P. N. Mager, and D. Yu. Klimushkin, “Pc5 waves generated by substorm injection: a case study,” Ann. Geophys. 26, 2053–2059 (2008). doi: 10.5194/angeo-26-2053-2008
https://doi.org/10.5194/angeo-26-2053-2008