Generation by global migratory flow of variable magnetic field of the Sun

Heading: 
1Loginov, AA, 2Kryvodubskyj, VN, 1Cheremnykh, OK
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
2Astronomical Observatory, Taras Shevchenko National University of Kyiv, 04053, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(1):30-47
https://doi.org/10.15407/kfnt2021.01.030
Start Page: Solar Physics
Language: Ukrainian
Abstract: 

In this work, we have demonstrated the dominant role of the global migratory flow (GMT) {vRgmf, vgmf, vgmf} in the generation of the solar variable magnetic field (vRgmf, vgmf, vgmf, are the radial, meridional and latitudinal components of the GMT velocity, which correspond to the velocities of the radial flow variation, the spatio-temporal variation of the meridional flow and torsion vibrations). The magnetic vector H* = {H, H*} was introduced, which we called the “model bipolar group of spots” (H and H are the meridional and the azimuthal components of the variable magnetic field of the Sun). As a result of numerical calculations based on the kinematic dynamo model, a scheme of the latitudinal-temporal distribution of the relative amplitudes of the magnetic components H and H on the surface of the Sun during the 22 year magnetic cycle is constructed. It was found that the relative amplitudes of the meridional and the azimuthal variable fields depend on the heliolatitude. They have maximum values in the equatorial belt and decrease to minimum values in the near-pole zones. In the equatorial belt, the magnetic sign of the head spot of the “model bipolar group of spots” coincides with the sign of the radial field in the near-pole belt. This corresponds to the ratio of the observed signs of the bipolar groups of spots and the near-pole field in the Hale magnetic cycle. At the same time, the signs of the bipolar groups of spots at high heliolatitudes are in conflict with the Hale-Nicholson law. Obviously, the violation of the polarities of the magnetic vector H* can be explained by taking into account the results of modeling the dependence of the constant toroidal magnetic field on the polar angle that we obtained in previous studies. Moreover, the deviation from the Hale-Nicholson law, apparently, can be associated with the polarity of the first high-latitude bipolar groups of spots of the new cycle, observed at the end of old cycles.

Keywords: global migratory flow, kinematic dynamo, magnetic cyclicity of the Sun, magnetic fields, numerical simulation, solar convection zone, sunspots
References: 

1. Zagorodnii A. G., Cheremnykh O. K. (2014) Introduction to Plasma Physics. Kyiv: Nauk. Dumka. 696. (In Russian).

2. Kremenets’kyi I. O., Cheremnykh O. K. (2009) Space Weather: Mechanisms and Manifestations. Kyiv: Nauk. Dumka. 144. (In Ukrainian).

3. Loginov A. A., Krivodubskij V. N., Cheremnykh O. K., Salnikov N. N. (2012) About the spatio-temporal structure of global currents on the Sun. Visnyk Kyiv Univ. Astronomy. 48. 54—57. (In Russian).

4. Loginov A. A., Salnikov N. N., Cheremnykh O. K., Krivodubskij V. N., Maslova N. V. (2011) Hydrodynamic model for generating the global poloidal flow of the Sun. Kosm. nauka tehnol. [Space Sci. and Technology]. 17(1). 29—35. (In Russian).
https://doi.org/10.15407/knit2011.01.029

5. Loginov A. A., Samoilenko Yu. I., Tkachenko V. A. (2000) Excitation of a meridional flow by differential rotation in the Earth’s liquid core. Kosm. Nauka Tekhnol. [Space Sci. and Technology]. 6(2/3). 53—68. (In Russian).
https://doi.org/10.15407/knit2000.02.053

6. Loginov A. A., Cheremnykh O. K., Krivodubskij V. N., Salnikov N. N. (2012) Hydrodynamic model of torsion oscillations of the Sun. Kosm. nauka tehnol. [Space science and technology]. 18(1). 74—81. (In Russian).
https://doi.org/10.15407/knit2012.01.074

7. Samoilenko Yu. I. (2006) Problems and Methods of Physical Cybernetics. Kiev: Trudy Inst. Mathem. NANU [Proceedings of the Institute of Mathematics of NASU]. 644. (In Russian).

8. Samoilenko Yu. I., Loginov A. A., Tkachenko V. A. (2001) Modeling the generation of the geomagnetic field. Vestn. Kherson. Gos. Tech. Univ. 3(12). 235—244. (In Russian).

9. Khlystova A. I., Sokolov D. D. (2008) Toroidal magnetic field of the Sun from data on Hale-rule-violating sunspot groups. Solar and Solar-Terrestrial Physics – 2008. St. Petersburg: Glav. (Pulkovo) Astron. Obs. Ross. Akad. Nauk. 373–374. (In Russian).

10. Altrock R. C. (1997) An «extended solar cycle» as observed in Fe XIV. Solar Phys. (170). 411—423.
https://doi.org/10.1023/A:1004958900477

11. Babcock H. D. (1959) The Sun’s polar magnetic field. Astrophys. J. 130( 2). 364—365.
https://doi.org/10.1086/146726

12. Babcoсk H. W. (1961) The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. (133). 572—1033.
https://doi.org/10.1086/147060

13. Charbonneau P. (2010) Dynamo models of the solar cycle. Living Rev. Solar Phys. 7(3). 1—91.
https://doi.org/10.12942/lrsp-2010-3

14. Hale G. E., Ellerman F., Nicholson S. B., Joy A. H. (1919) The magnetic polarity of sun-spots. Astrophys. J. 49. 153—186.
https://doi.org/10.1086/142452

15. Hale G. E., Nicholson S. B. (1925) The low of Sun-spot polarity. Astrophys. J. 62). 270.
https://doi.org/10.1086/142933

16. Hale G. E., Nicolson S. B. (1938)  Magnetic observations of sunspots, 1917-1924, Part I. Publ. Carnegie Inst.Washington, D.C. Carnegie institution of Washington. № 438.

17. Howe R., Christensen-Dalsgaard J., Hill F., Komm R. W., Larsen R. M., Schou J., Thompson M. J., Toomre J. (2000) Dynamic variations at the base of the solar convection zone. Science. 287.  2456—2460.
https://doi.org/10.1126/science.287.5462.2456

18. Krivodubskij V. N. (2005) Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachr. 326(1). 61—74.
https://doi.org/10.1002/asna.200310340

19. Krivodubskij V. N. (2017) Double maxima of 11-year solar cycles. Kinematics Phys. Celestial Bodies. 33(1). 24—38.
https://doi.org/10.3103/S0884591317010044

20. Kryvodubskyj V. N. (2006) Dynamo parameters of the solar convection zone. Kinematics Phys. Celestial Bodies. 22(1). 1—20.

21. Kosovichev A. G., Pipin V. V. (2019) On the origin of solar torsional oscillations and extended solar cycle. Astrophys. J. 887(2). 215—231. (article id. 215, 16 pp.).
https://doi.org/10.3847/1538-4357/ab5952

22. Loginov A. A., Cheremnykh O. K., Krivodubskij V. N., Salnikov N. N. (2012) Hydrodynamic model of spatial and temporial variations of poloidal and toroidal components of three-dimensional solar flows. Bull. Crimean. Astrophys. Observ. 108(1). 58—63.
https://doi.org/10.3103/S0190271712010159

23. Loginov A. A., Krivodubskij V. N., Cheremnykh O. K. (2020) Generation of the radial magnetic field of the Sun by global hydrodynamic flows. Kinematics Phys. Celestial Bodies. 36(2). 56—63.
https://doi.org/10.3103/S0884591320020063

24. Loginov A. A., Krivodubskij V. N., Salnikov N. N., Prutsko Yu. V. (2017) Simulating the generation of the solar toroidal magnetic field by differential rotation. Kinematics Phys. Celestial Bodies. 33(6). 265—275.
https://doi.org/10.3103/S0884591317060058

25. Loginov A. A., Sal’nikov N. N., Cheremnykh O. K., Zyelyk Ya.  I., Maslova N. V. (2011) On the hydrodynamic mechanism of the generation of the global poloidal flux on the Sun. Kinematics Phys. Celestial Bodies. 27(5). 217—223.
https://doi.org/10.3103/S0884591311050060

26. Ossendrijver M. (2003) The solar dynamo. Astron. Astrophys. Rev. 11(4).  287—367.
https://doi.org/10.1007/s00159-003-0019-3

27. Parker E. N. (1955) The formation of sunspots from the solar toroidal field. Astrophys. J. 121. 491—507.
https://doi.org/10.1086/146010

28. Priest E. R. (1981) Solar magnetohydrodynamics. Dordrecct/Boston/London: D. Reidel Publishing Company.

29. Stenflo J. O. (1992) Comments on the concept of an “extended solar cycle”. Astron. Soc. Pacif. Conf. Ser. 27. The Solar Cycle, ed. K. L. Harvey. 421—424.

30. Wilson P. R., Altrocki R. C., Harvey K. L., Martin S. F., Snodgrass H. B. (1988) The extended solar activity cycle. Nature. 333. 748—750.
https://doi.org/10.1038/333748a0

31. Zeldovich Ya. B., Ruzmaikin A. A., Sokoloff D. D. (1983) Magnetic Fields in Astrophysics. New York: Gordon and Breach.