Огляд областей з метанольними мазерами в лінії CS (J = 2–1). Статистичні характеристики випромінювань

Патока, ОМ, Шульга, ВМ, Антюфєєв, ОВ, Мишенко, ВВ, Корольов, ОМ, Піддячий, ВІ
Рубрика: Фізика зір і межзоряного середовища
Мова: російська
Анотація: 

Основна мета цієї роботи полягала у встановленні взаємозалежностей між параметрами випромінювання метанольного мазера, який виникає в щільних областях зореутворення, і параметрами щільного ядра, які визначалися по випромінюванню молекули CS. Ми проспостерігали в цілому 164 джерела в напрямку на позиції метанольннх мазерів з використанням RT-22 в КрАО, Україна. Для 85 джерел було виявлено випромінювання в лінії CS (J = 2-1). Більшість джерел були відібрані з каталогів метанольннх мазерів як класу І, так і класу II. Для метанольннх мазерів північної небесної півсфери це найповніший огляд в лінії CS (J = 2-1). Ми проводимо порівняльний аналіз параметрів спектрів CS (J = 2-1) і метанольннх мазерів, світимостей щільних ядер і інфрачервоних джерел. Ми вивчаємо рівні виявлення випромінювання в лінії CS (J = 2-1), інтенсивності і ширину ліній CS (J= 2-1), різниці між систематичними швидкостями і швидкостями центрів мазерних ліній. Показані відмінності рівнів виявлення випромінювання в лінії CS (J=2-1) для різних вибірок джерел. Знайдено вид залежностей lgLCS від lgLbol, lgLmasвід lgLCS, та lgLmas від lgLbol, для джерел, з якими асоціюються метанольні мазери. Спираючись на світимість інфрачервоних джерел, визначені вибірки джерел, в яких випромінювання в лінії CS (J= 2-1) реєструється з більшою ймовірністю.

Ключові слова: зореутворення, метанольні мазери, молекула CS, щільні ядра
References: 

1. Антюфеев А. В., Зубрин С. Ю., Король А. Н., Королев А. М., Мышенко В. В., Подъячий В. И., Поладич А. В., Шкодин В. И., Шульга В. М. Аппаратурный комплекс для спектральных наблюдений в диапазоне частот 85—116 ГГц на радиотелескопе РТ-22 КрАО. Радиофизика и радиоастрономия. 2010. 15, № 4. С. 369—375.

2. Антюфеев А. В., Шульга В. М. Спектроанализатор на базе персонального компьютера. Радиотехника. 2005. 10. С. 145—148.

3. Патока А. Н., Шульга В. М., Антюфеев А. В., Зубрин С. Ю., Мишенко В. В., Королев А. М., Подъячий В. И. Области существования метанольных мазеров класса II. Статистические особенности излучения в линии CS (/= 2-1). Радиофизика и радиоастрономия. 2017. 22, № 3. С. 173—200.
https://doi.org/10.15407/rpra22.03.173

4. Шульга В. М., Антюфеев А. В., Зубрин С. Ю., Мишенко В. В., Подъячий В. И., Королев А. М., Патока А. Н. Наблюдение нетипичных мазеров на радиотелескопе РТ-22 в 2004 — 2013 годах. Радиофизика и радиоастрономия. 2017. 22, № 2. С. 112—122.
https://doi.org/10.15407/rpra22.02.112

5.L. D. Anderson, D. S. Balser, V. Cunningham, and W. P. Armentrout, “The WISE catalog of galactic H II regions,” Astrophys. J., Suppl. Ser. 212, 1 (2014).
https://doi.org/10.1088/0067-0049/212/1/1

6.G. Anglada, R. Estalella, J. Pastor, L. F. Rodriguez, and A. D. Haschick, “A CS and NH3 survey of regions with H2O maser emission,” Astrophys. J. 463, 205–223 (1996).
https://doi.org/10.1086/177235

7.Y. Ao, J. Yang, and K. Sunada, “13CO, C18O, and CS observations toward massive dense cores. Astron. J. 128, 1716–1732 (2004).
https://doi.org/10.1086/423906

8.R. Bachiller, J. Gomez-Gonzalez, A. Barcia, and K. Menten, “The 44 GHz methanol masers — Results of an extensive survey in the 70 – 61A+ line,” Astron. Astrophys. 240,116–122 (1990).

9.J.-H. Bae, K.-T. Kim, S.-Y. Youn, W.-J. Kim, D.-Y. Byun, H. Kang, “A multi-epoch, simultaneous water and methanol maser survey toward intermediate-mass young stellar objects,” Astrophys. J., Suppl. Ser. 196, 21 (2011).
https://doi.org/10.1088/0067-0049/196/2/21

10.W. Batrla, H. E. Matthews, and K. Menten, “Detection of strong methanol masers towards galactic H II regions,” Nature 326, 49–51 (1987).
https://doi.org/10.1038/326049a0

11.O. S. Bayandina, I. E. Val’tts, and G. M. Larionov, “Class I methanol maser emission in infrared clouds and the third version of the Astro Space Center MMI/SFR catalog,” Astron. Rep. 56, 553–563.
https://doi.org/10.1134/S1063772912060029

12.H. Beuther, P. Schilke, K. M. Menten, F. Motte, T. K. Sridharan, and F. Wyrowski, “High-mass protostellar candidates. II. Density structure from dust continuum and CS emission,” Astrophys. J. 566, 945–965 (2002).
https://doi.org/10.1086/338334

13.L. Kus and A. J. Blaszkiewicz, “12.2 GHz survey towards 6.7 GHz methanol masers. A comparison of 12.2 GHz and 6.7 GHz spectra,” Astron. Astrophys. 413, 233–240 (2004).
https://doi.org/10.1051/0004-6361:20031451

14.S. L. Breen, S. P. Ellingsen, J. L. Caswell, J. A. Green, G. A. Fuller, M. A. Voronkov, L. J. Quinn, and A. Avison, “Statistical properties of 12.2 GHz methanol masers associated with a complete sample of 6.7 GHz methanol masers,” Astrophys. J. 733, 80 (2011).
https://doi.org/10.1088/0004-637X/733/2/80

15.S. L. Breen, S. P. Ellingsen, J. L. Caswell, J. A. Green, M. A. Voronkov, A. Avison, G. A. Fuller, and L. J. Quinn, “12.2-GHz methanol maser MMB follow-up catalogue — IV. Longitude range 20º – 60º,” Mon. Not. R. Astron. Soc. 459, 4066–4087 (2016).
https://doi.org/10.1093/mnras/stw965

16.S. L. Breen, S. P. Ellingsen, J. L. Caswell, J. A. Green, M. A. Voronkov, G. A. Fuller, L. J. Quinn, and A. Avison, “12.2-GHz methanol maser methanol multibeam follow-up catalogue — II. Longitude range 186º – 330º,” Mon. Not. R. Astron. Soc. 426, 2189–2207 (2012).
https://doi.org/10.1111/j.1365-2966.2012.21759.x

17.S. L. Breen, S. P. Ellingsen, and J. L. Caswell, “12.2-GHz methanol masers towards 1.2-mm dust clumps: Quantifying high-mass star formation evolutionary schemes,” Mon. Not. R. Astron. Soc. 401, 2219–2244 (2010).
https://doi.org/10.1111/j.1365-2966.2009.15831.x

18.S. L. Breen and S. P. Ellingsen, “Masers as evolutionary tracers of high-mass star formation,” Proc. IAU Symp. 287, 156–160.
https://doi.org/10.1017/S1743921312006837

19.L. Bronfman, L.-A. Nyman, and J. May, “A CS (2-1) survey of IRAS point sources with color characteristics of ultra-compact H II regions,” Astron. Astrophvs., Suppl. Ser. 115, 1–81 (1996).

20.R. A. Burns, K. Sunada, and T. Omodaka, “H2O masers in a jet-driven bow shock: Episodic ejection from a massive young stellar object,” Mon. Not. R. Astron. Soc. 460, 283–290 (2016).
https://doi.org/10.1093/mnras/stw958

21.R. A. Burns, H. Imai, A. Nakagawa, and Y. Ueno, “'Water Spout’ maser jet in S235AB-MIR,” Mon. Not. R. Astron. Soc. 453, 3163–3173 (2015).
https://doi.org/10.1093/mnras/stv1836

22.D.-Y. Byun, K.-T. Kim, and J.H. Bae, “44-GHz class I methanol maser survey towards 6.7-GHz class II methanol masers,” Proc. Int. Astron. Union 8, 284–285 (2012).
https://doi.org/10.1017/S1743921312007156

23.J. L. Caswell, G. A. Fuller, J. A. Green, A. Avison, S. L. Breen, K. J. Brooks, M. G. Burton, A. Chrysostomou, J. Cox, P. J. Diamond, S. P. Ellingsen, M. D. Gray, M. G. Hoare, M. R. W. Masheder, N. M. McClure-Griffiths, M. R. Pestalozzi, S. J. Philips, L. Quinn, M.A. Thompson, and M. A. Voronkov, “The 6-GHz methanol multibeam maser catalogue — I. Galactic centre region, longitudes 345º to 6º,” Mon. Not. R. Astron. Soc. 404, 1029–1060 (2010).
https://doi.org/10.1111/j.1365-2966.2010.16339.x

24.J. L. Caswell, R. A. Vaile, S. P. Ellingsen, and R. P. Norris, “Galactic methanol masers at 12 GHz,” Mon. Not. R. Astron. Soc. 274, 1126–1152 (1995).
https://doi.org/10.1093/mnras/274.4.1126

25.J. L. Caswell, J. Yi, R. S. Booth, and D. M. Cragg, “Methanol masers at 107.0 and 156.6 GHz,” Mon. Not. R. Astron. Soc. 313, 599–616 (2000).
https://doi.org/10.1046/j.1365-8711.2000.03277.x

26.M. Catarzi, L. Moscadelli, and D. Panella, “Observation of methanol maser sources with the Arcetri 12 GHz receiver,” Astron. Astrophys., Suppl. Ser. 98, 127–135 (1993).

27.X. Chen, S. P. Ellingsen, Z.-Q. Shen, A. Titmarsh, and C.-G. Gan, “A 95 GHz class I methanol maser survey toward glimpse Extended Green Objects (EGOs),” Astrophys. J., Suppl. Ser. 196, 9 (2011).
https://doi.org/10.1088/0067-0049/196/1/9

28.X. Chen, S. P. Ellingsen, and Z.-Q. Shen, “Class I methanol masers: Masers with extended green objects,” Mon. Not. R. Astron. Soc. 396, 1603–1609 (2009).
https://doi.org/10.1111/j.1365-2966.2009.14818.x

29.Y. K. Choi, K. Hachisuka, M. J. Reid, Y. Xu, A. Brunthaler, K. Menten, “Trigonometric parallaxes of star forming regions in the Perseus spiral arm,” Astrophys. J 790, 99 (2014).
https://doi.org/10.1088/0004-637X/790/2/99

30.M. S. Connelley and A. T. Tokunaga, “The evolution of the multiplicity of embedded protostars. I. Sample properties and binary detections,” Astron. J. 135, 2496–2525 (2008).
https://doi.org/10.1088/0004-6256/135/6/2496

31.C. J. Cyganowski, C. L. Brogan, T. R. Hunter, and E. Churchwell, “A class I and class II CH3OH maser survey of EGOs from the GLIMPSE survey,” Astrophys. J. 702, 1615–1647 (2009).
https://doi.org/10.1088/0004-637X/702/2/1615

32.J. Koda, E. Rosolowsky, S. Towers, J. D. Meyer, F. Egusa, R. Momose, T. P. Robitaille, “A water maser and NH3 survey of glimpse extended green objects,” Astrophys. J. 764, 61 (2013).
https://doi.org/10.1088/0004-637X/764/1/61

33.S. Dzib, L. Loinard, L. F. Rodriguez, A. J. Mioduszewski, and R. M. Torres, “VLBA Determination of the distance to nearby star-forming regions. VI. The distance to the young stellar object HW 9 in Cepheus A,” Astrophys. J. 733, 71 (2011).
https://doi.org/10.1088/0004-637X/733/1/71

34.S. P. Ellingsen, “The relationship between class I and class II methanol masers,” Mon. Not. R. Astron. Soc 359, 1498–1516 (2005).
https://doi.org/10.1111/j.1365-2966.2005.09010.x

35.S. P. Ellingsen, S. L. Breen, M. A. Voronkov, and J. R. Dawson, “Testing maser-based evolutionary schemes: A new search for 37.7-GHz methanol masers,” Mon. Not. R. Astron. Soc. 429, 3501–3516 (2013).
https://doi.org/10.1093/mnras/sts621

36.S. Faundez, L. Bronfman, G. Garay, R. Chini, L.-C. Nyman, and J. May, “SIMBA survey of southern high-mass star forming regions. I. Physical parameters of the 1.2 mm/IRAS sources,” Astron. Astrophys. 426, 97–103 (2004).
https://doi.org/10.1051/0004-6361:20035755

37.V. L. Fish, T. C. Muehlbrad, P. Pratap, L. O. Sjouwerman, V. Strelnitski, Y. M. Pihlstrom, and T. L. Bourke, “First interferometric images of the 36 GHz methanol masers in the DR21 Complex,” Astrophys. J. 729, 14 (2011).
https://doi.org/10.1088/0004-637X/729/1/14

38.F. Fontani, R. Cesaroni, and R. S. Furuya, “Class I and class II methanol masers in high-mass star-forming regions,” Astron. Astrophys. 517, A56 (2010).
https://doi.org/10.1051/0004-6361/200913679

39.J. Foster, J. M. Jackson, P. J. Barnes, E. Barris, K. Brooks, M. Cunningham, S. C. Finn, G. A. Fuller, S. N. Longmore, J. L. Mascoop, N. Peretto, J. Rathborne, P. Sanhueza, F. Schuller, and F. Wyrowski, “The millimeter astronomy legacy team 90 GHz (MALT90) pilot survey,” Astrophys. J. Suppl. Ser. 197, 25 (2011).
https://doi.org/10.1088/0067-0049/197/2/25

40.C.-G. Gan, X. Chen, Z.-Q. Shen, Y. Xu, and B.-G. Ju, “A search for 95 GHz class I methanol masers in molecular outflows,” Astrophys. J. 763, 2 (2013).
https://doi.org/10.1088/0004-637X/763/1/2

41.D. Gibson, R. Plume, E. Bergin, S. Ragan, and N. Evans, “Molecular line observations of infrared dark clouds. II. Physical conditions,” Astrophys. J. 705, 123–134 (2009).
https://doi.org/10.1088/0004-637X/705/1/123

42.A. I. Gomez-Ruiz, S. E. Kurtz, E. D. Araya, P. Hofner, and L. Loinard, “A catalog of methanol masers in massive star-forming regions. III. The molecular outflow sample,” Astrophys. J., Suppl. Ser. 222, 18 (2016).
https://doi.org/10.3847/0067-0049/222/2/18

43.J. Harju, K. Lehtinen, R. S. Booth, and I. Zinchenko, “A survey of SiO emission towards interstellar masers. I. SiO line characteristics,” Astron. Astrophys., Suppl. Ser. 132, 211–231 (1998).
https://doi.org/10.1051/aas:1998448

44.A. D. Haschick, K. Menten, and W. A. Baan, “Detection of widespread strong methanol masers at 44 GHz,” Astrophys. J. 354, 556–567 (1990).
https://doi.org/10.1086/168715

45.J. H. He, S. Takahashi, and X. Chen, “A 1 mm spectral line survey toward glimpse Extended Green Objects (EGOs),” Astrophys. J. Suppl. Ser. 202, 1 (2012).
https://doi.org/10.1088/0067-0049/202/1/1

46.J. Hennen, Master of Science Thesis (College of Science and Health, DePaul Univ., Chicago, IL, 2012).

47.T. Hirota, K. Ando, T. Bushimata, Y.K. Choi, M. Honma, H. Imai, K. Iwadate, T. Jike, S. Kameno, O. Kameya, R. Kamohara, Y. Kan-Ya, H. Kawaguchi, S. Kuji, T. Kurayama, S. Manabe, M.M.N. Matsui, T. Miyaji, A. Miyazaki, T. Nagayama, A. Nakagawa, D. Namikawa, D. Nyu, C.S. Oh, T. Omodaka, T. Oyama, S. Sakai, T. Sasao, K. Sato, M. Sato, K.M. Shibata, Y. Tamura, K. Ueda, and K. Yamashita, “Astrometry of H2O masers in nearby star-forming regions with VERA III. IRAS 22198+6336 in Lyndsl204G,” Publ. Astron. Soc. Jpn. 60, 961–974 (2008).
https://doi.org/10.1093/pasj/60.5.961

48.T. Hirota, T. Bushimata, Y. K. Choi, M. Honma, H. Imai, K. Iwadate, T. Jike, S. Kameno, O. Kameya, R. Kamohara, Y. Kan-Ya, N. Kawaguchi, M. Kijima, M. K. Kim, H. Kobayashi, S. Kuji, T. Kurayama, S. Manabe, K. Maruyama, M. Matsui, N. Matsumoto, T. Miyaji, T. Nagayama, A. Nakagawa, K. Nakamura, C. S. Oh, T. Omodaka, T. Oyama, S. Sakai, T. Sasao, K. Sato, M. Sato, K. M. Shibata, M. Shintani, Y. Tamura, M. Tsushima, and K. Yamashita, “Distance to Orion KL measured with VERA,” Publ. Astron. Soc. Jpn. 59, 897–903 (2007).
https://doi.org/10.1093/pasj/59.5.897

49.M. Honma, T. Bushimata, Y. K. Choi, T. Hirota, H. Imai, K. Iwadate, T. Jike, O. Kameya, R. Kamohara, Y. Kan-Ya, N. Kawaguchi, M. Kijima, H. Kobayashi, S. Kuji, T. Kurayama, S. Manabe, T. Miyaji, T. Nagayama, A. Nakagawa, C. S. Oh, T. Omodaka, T. Oyama, S. Sakai, K. Sato, T. Sasao, K. M. Shibata, M. Shintani, H. Suda, Y. Tamura, M. Tsushima, and K. Yamashita, “Astrometry of galactic star-forming region sharpless 269 with VERA: Parallax measurements and constraint on outer rotation curve,” Publ. Astron. Soc. Jpn. 59, 889–895 (2007).
https://doi.org/10.1093/pasj/59.5.889

50.L. G. Hou and J. L. Han, “The observed spiral structure of the Milky Way,” Astron. Astrophys. 569, 125 (2014).
https://doi.org/10.1051/0004-6361/201424039

51.B. Hu, K. M. Menten, Y. Wu, A. Bartkiewicz, K. Rygl, M. J. Reid, J. S. Urquhart, and X. Zheng, “On the relationship of UC H II regions and class II methanol masers. I. Source catalogs,” Astrophys. J. 833, 18 (2016).
https://doi.org/10.3847/0004-637X/833/1/18

52.V. A. Hughes and G. C. MacLeod, “A comparison of the infrared luminosity and ionizing luminosity of selected star forming regions,” Astron. J. 105, 1495–1504 (1993).
https://doi.org/10.1086/116528

53.J. Jijina, P. C. Myers, and F. Adams, “Dense cores mapped in ammonia: A database,” Astrophys. J., Suppl. Ser. 125, 161–236 (1999).
https://doi.org/10.1086/313268

54.C. H. Jordan, A. J. Walsh, S. L. Breen, S. P. Ellingsen, M. A. Voronkov, and L. J. Hyland, “MALT-45: A 7 mm survey of the southern galaxy. II. ATCA follow-up observations of 44 GHz class I methanol masers,” Mon. Notic. R. Astron. Soc. 471, 3915–3954 (2017).
https://doi.org/10.1093/mnras/stx1776

55.S. V. Kalenskii, T. Liljestroem, I. E. Val’tts, V. I. Vasil’kov, V. I. Slysh, and S. Urpo, “Observations of methanol masers at 95 GHz,” Astron. Astrophys., Suppl. Ser. 103, 129–134 (1994).

56.S. V. Kalenskii, V. G. Promyslov, V. I. Slysh, P. Bergman, and A. Winnberg, “The detection of class I methanol masers towards regions of low-mass star formation,” Astron. Rep. 50, 289–297 (2006).
https://doi.org/10.1134/S1063772906040032

57.H. Kang, K.-T. Kim, D.-Y. Byun, S. Lee, and Y.-S. Park, “Simultaneous observation of water and class I methanol masers toward class II methanol maser sources,” Astrophys. J., Suppl. Ser. 221, 6 (2015).
https://doi.org/10.1088/0067-0049/221/1/6

58.J. Kang, D. -Y. Byun, K. -T. Kim, J. Kim, A. -R. Lyo, and W. H. T. Vlemmings, “Linear polarization of class I methanol masers in massive star-forming regions,” Astrophys. J. Suppl. Ser. 227, 17 (2016).
https://doi.org/10.3847/0067-0049/227/2/17

59.M. S. Kirsanova, A. M. Sobolev, and M. Thomasson, “Gas kinematics in high-mass star-forming regions from the Perseus Spiral Arm,” Astron. Rep. 61, 760–774.
https://doi.org/10.1134/S1063772917090025

60.S. Kurtz, P. Hofner, and C.V. Alvarez, “A catalog of CH3OH 70–61A+ maser sources in massive star-forming regions,” Astrophys. J. Suppl. Ser. 155, 149–165 (2004).
https://doi.org/10.1086/423956

61.M. L. Kutner and B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981).
https://doi.org/10.1086/159380

62.G. M. Larionov and I. E. Val’tts, “The methanol emission of isolated maser condensations: statistical velocity distribution,” Astron. Rep. 51, 756–772 (2007).
https://doi.org/10.1134/S1063772907090065

63.G. M. Larionov, I. E. Val’tts, A. Winnberg, L. E. Johansson, R. S. Booth, and V. V. Golubev, “Survey of bipolar outflows and methanol masers in the C32S (2–1) and C34S (2–1) lines in the northern sky,” Astron. Astrophys., Suppl. Ser. 139, 257–275 (1999).
https://doi.org/10.1051/aas:1999392

64.J.-E. Lee, E. A. Bergin, and N. J. Evans II, “Evolution of chemistry and molecular line profiles during protostellar collapse,” Astrophys. J. 617, 360–383 (2004).
https://doi.org/10.1086/425153

65.F. C. Li, Y. Xu, Y. W. Wu, J. Yang, D. R. Lu, K. M. Menten, “Ammonia and CO outflow around 6.7 GHz methanol masers,” Astrophys. J. 152, 92 (2016).
doi 10.3847/0004-6256/152/4/92

66.S. Liechti and T. L. Wilson, “Maps of the 36GHz methanol emission,” Astron. Astrophys. 314, 615–624 (1996).

67.W. Lim, A.-R. Lyo, K.-T. Kim, and D.-Y. Byun, “Candidates for the young stellar outflows: Water and methanol masers from young stellar objects,” Astron. J. 144, 151 (2012).
https://doi.org/10.1088/0004-6256/144/5/151

68.I. D. Litovchenko, A. V. Alakoz, I. E. Val’tts, and G. M. Larionov, “Search for class I methanol maser emission in various types of objects in the interstellar medium,” Astron. Rep. 55, 1086–1095 (2011).
https://doi.org/10.1134/S1063772911120080

69.S. L. Lumsden, M. G. Hoare, J. S. Urquhart, R. D. Oudmaijer, J. C. Mottram, H. D. Cooper, T. J. T. Moore, “The red MSX source survey: The massive young stellar population of our galaxy,” Astrophys. J., Suppl. Ser. 208, 11 (2013).
doi 10.1088/0067-0049/208/1/11

70.D. M. Mehringer, S. Zhou, and H. R. Dickel, “BIMA array observations of the, 107 GHz methanol masers in Cepheus A,” Astrophys. J., Lett. 475, L57–L60 (1997).
https://doi.org/10.1086/310462

71.K. Menten, “Methanol masers and submillimeter wavelength water masers in star-forming regions,” in Atoms, Ions and Molecules: New Results in Spectral Line Astrophysics (Astron. Soc. Pac., San Francisco, CA, 1991), in Ser.: ASP Conference Series, Vol. 16, pp. 119–136.

72.V. Minier, J. E. Conway, and R. S. Booth, “VLBI observations of 6.7 and 12.2 GHz methanol masers toward high mass star-forming regions. II. Tracing massive protostars,” Astron. Astrophys. 369, P. 278–290 (2001).
doi 10.1051/0004-6361:20010124

73.G. A. Moellenbrock, M. J. Claussen, and W. M. Goss, “A precise distance to IRAS 00420+5530 via H2O maser parallax with the VLBA,” Astrophys. J. 694, 192–204 (2009).
https://doi.org/10.1088/0004-637X/694/1/192

74.A. P. Moises, A. Damineli, E. Figueredo, R. D. Blum, and P. S. Conti, “Spectrophotometric distances to galactic HII regions,” Mon. Not. R. Astron. Soc. 411, 705–760 (2011).
https://doi.org/10.1111/j.1365-2966.2010.17713.x

75.S. Molinari, J. Brand, R. Cesaroni, and F. Palla, “A search for precursors of ultracompact HII regions in a sample of luminous IRAS sources. I. Association with ammonia cores,” Astron. Astrophys. 308, 573–587 (1996).

76.L. Moscadelli, R. Cesaroni, M. J. Rioja, R. Dodson, and M. J. Reid, “Methanol and water masers in IRAS 20126+4104: The distance, the disk, and the jet,” Astron. Astrophys. 526, A66 (2011).
https://doi.org/10.1051/0004-6361/201015641

77.L. Moscadelli, M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, and Y. Xu, “Trigonometric parallaxes of massive star-forming regions. II. Ser A and NG, C 7538,” Astrophys. J. 693, 406–412 (2009).
https://doi.org/10.1088/0004-637X/693/1/406

78.J. C. Mottram, M. G. Hoare, J. S. Urquhart, S. L. Lumsden, R. D. Oudmaijer, T. P. Robitaille, T. J. Moore, and J. Stead, “The red MSX source survey: The bolometric fluxes and luminosity distributions of young massive stars,” Astron. Astrophys. 525 (2011).
doi 10.1051/0004-6361/201014479

79.H. S. P. Miiller, K. Menten, and H. Mader, “Accurate rest frequencies of methanol maser and dark cloud lines,” Astron. Astrophys. 428, 1019–1026 (2004).
https://doi.org/10.1051/0004-6361:20041384

80.K. Niinuma, M. Honma, K. Motogi, A. Nakagawa, Y. Kan-Ya, N. Kawaguchi, H. Kobayashi, and Y. Ueno, “Astrometry of H2O masers in the massive star-forming region IRAS 06061+2151 with VERA,” Publ. Astron. Soc. Jpn. 63, 9–16 (2011).
https://doi.org/10.1093/pasj/63.1.9

81.H. Kobayashi, M. Honma, K. Sato, and Y. Ueno, “VERA Observations of H2O maser sources in three massive star-forming regions and galactic rotation measurements,” Publ. Astron. Soc. Jpn. 62, 101–114 (2010).
https://doi.org/10.1093/pasj/62.4.1025

82.F. Palla, J. Brand, R. Cesaroni, G. Comeretto, and M. Felli, “Water masers associated with dense molecular clouds and ultracompact H II regions,” Astron. Astrophys. 246, 249–263 (1991).

83.J. D. Pandian, P. F. Goldsmith, and A. A. Deshpande, “The Arecibo methanol maser galactic plane survey. I. Data,” Astrophys. J. 656, 255–274 (2007).
https://doi.org/10.1086/510512

84.O. Patoka, “Spectral characteristics of molecule CS emission in regions containing methanol masers,” in Proc. 2015 Int. Young Scientists Forum on Applied Physics (YSF), Dnipropetrovsk, Sept. 29 – Oct. 2, 2015 (IEEE, New York, 2015) pp. 1–2.
doi 10.1109/YSF.2015.7333259

85.M. R. Pestalozzi, V. Minier, and R. S. Booth, “A general catalogue of 6.7-GHz methanol masers: I. Data,” Astron. Astrophys. 432, 737–742 (2005).
https://doi.org/10.1051/0004-6361:20035855

86.M. R. Pestalozzi, V. Minier, F. Motte, and J. E. Conway, “Discovery of two new methanol masers in NGC 7538. Locating of massive protostars,” Astron. Astrophys., 448, L57–L60 (2006).
https://doi.org/10.1051/0004-6361:200600006

87.V. I. Piddyachiy, V. M. Shulga, A. M. Korolev, and V. V. Myshenko, “High doping density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver,” Int. J. Infrared Millimeter Waves 26, 1307–1315 (2005).
doi 10.1007/s10762-005-7605-6

88.R. L. Plambeck and K. M. Menten, “95 GHz methanol masers near DR 21 and DR 21 (OH),” Astrophys. J. 364, 555–560 (1990).
https://doi.org/10.1086/169437

89.S. E. Ragan, E. A. Bergin, R. Plume, D. L. Gibson, D. J. Wilner, S. O’ Brien, and E. Hails, “Molecular line observations of infrared dark clouds: seeking the precursors to intermediate and massive star formation,” Astrophys. J. Suppl. Ser. 166, 567–584 (2006).
https://doi.org/10.1086/506594

90.S. E. Kurtz, A. I. Gomez-Ruiz, P. Hofner, E. D. Araya, S. V. Kalenskii, “A Catalog of 44 GHz methanol masers in massive star-forming regions. IV. The high-mass protostellar object sample,” Astrophys. J. Suppl. Ser. 233, 4 (2017).
https://doi.org/10.3847/1538-4365/aa8f4e

91.D. Russeil, “Star-forming complexes and the spiral structure of our galaxy,” Astron. Astrophys. 397, 133–146 (2003).
https://doi.org/10.1051/0004-6361:20021504

92.K. L. J. Rygl, A. Brunthaler, M. J. Reid, K. M. Menten, H. J. van Langevelde, and Y. Xu, “Trigonometric parallaxes of 6.7 GHz methanol masers,” Astron. Astrophys. 511, A2 (2010).
https://doi.org/10.1051/0004-6361/200913135

93.K. L. J. Rygl, A. Brunthaler, A. Sanna, K. M. Menten, M. J. Reid, J. H. van Langevelde, M. Honma, K. J. E. Torstensson, and K. Fujisawa, “Parallaxes and proper motions of interstellar masers toward the Cygnus X star-forming complex. I. Membership of the Cygnus X region,” Astron. Astrophys. 539, A79 (2012).
https://doi.org/10.1051/0004-6361/201118211

94.N. Sakai, M. Sato, K. Motogi, T. Nagayama, K. M. Shibata, M. Kanaguchi, and M. Honma, “Absolute proper motion of IRAS 00259+5625 with VERA: Indication of super-bubble expansion motion,” Publ. Astron. Soc. Jpn. 66, 3 (2014).
https://doi.org/10.1093/pasj/pst005

95.M. Sato, T. Hirota, M. Honma, H. Kobayashi, T. Sasao, T. Bushimata, Y. K. Choi, H. Imai, K. Iwadate, T. Jike, S. Kameno, O. Kameya, R. Kamohara, Y. Kan-Ya, N. Kawaguchi, M. K. Kim, S. Kuji, T. Kurayama, S. Manabe, M. Matsui, N. Matsumoto, T. Miyaji, T. Nagayama, A. Nakagawa, K. Nakamura, C. S. Oh, T. Omodaka, T. Oyama, S. Sakai, K. Sato, K. M. Shibata, Y. Tamura, and K. Yamashita, “Distance to NGC 281 in a galactic fragmenting superbubble: Parallax measurements with VERA,” Publ. Astron. Soc. Jpn. 60, 975–989 (2008).
https://doi.org/10.1093/pasj/60.5.975

96.D. E. Schenck, Y. L. Shirley, M. Reiter, and S. Juneau, “Testing the global star formation relation: an HCO+ (3-2) mapping study of red MSX sources in the Bolocam Galactic Plane Survey,” Astron. J. 142, 94 (2011).
https://doi.org/10.1088/0004-6256/142/3/94

97.W. M. Schlingman, Y. L. Shirley, D. E. Schenk, E. Rosolowsky, J. Bally, C. Battersby, M. K. Dunham, T. P. Ellsworth-Bowers, N. J. Evans II, A. Ginsburg, and G. Stringfellow, “The Bolocam Galactic Plane Survey. V. HCO+ and N2H+ spectroscopy of 1.1 mm dust continuum sources,” Astrophys. J., Suppl. Ser. 195, 14 (2011).
https://doi.org/10.1088/0067-0049/195/2/14

98.V. I. Slysh, S. V. Kalenskii, I. E. Val’tts, and V. V. Golubev, “Detection of a new methanol maser line with the Kitt Peak 12 meter telescope by remote observing from Moscow,” Astrophys. J., Lett. 478, L37–L40 (1997).
https://doi.org/10.1086/310548

99.V. I. Slysh, I. E. Val’tts, S. V. Kalenskii, M. A. Voronkov, F. Palagi, G. Tofani, and M. Catarzi, “The Medicina survey of methanol masers at 6.7 GHz,” Astron. Astrophys., Suppl. Ser. 134, 115–128 (1999).
https://doi.org/10.1051/aas:1999127

100.Y. Sun, Y. Xu, X. Chen, B. Zhang, Y.-W. Wu, C. Henkel, A. Brunthaler, Y. K. Choi, and X.-W. Zheng, “6.7 GHz methanol maser survey toward GLIMPSE point sources and BGPS 1.1 mm dust clumps,” Astron. Astrophys. 563, A130 (2014).
https://doi.org/10.1051/0004-6361/201323047

101.M. Szymczak, A. Bartkiewicz, and A. M. S. Richards, “A multi-transition molecular line study of candidate massive young stellar objects associated with methanol masers,” Astron. Astrophys. 468, 617–625 (2007).
https://doi.org/10.1051/0004-6361:20077289

102.M. Szymczak, G. Hrynek, and A. J. Kus, “A survey of the 6.7 GHz methanol maser emission from IRAS Sources. I. Data,” Astron. Astrophys., Suppl. Ser. 143, 269–301 (2000).
https://doi.org/10.1051/aas:2000334

103.M. Szymczak, A. J. Kus, G. Hrynek, A. Kepa, and E. Pazderski, “6.7 GHz Methanol masers at sites of star formation. A blind survey of the Galactic plane between 20° ≤ l ≤ 40° and |b| ≤ 0.52°,” Astron. Astrophys. 392, 277–286 (2002).
https://doi.org/10.1051/0004-6361:20020907

104.M. Szymczak, T. Pillai, K. M. Menten, “Masers as signposts of high-mass protostars. A water maser survey of methanol maser sources,” Astron. Astrophys. 434, 613–621 (2005).
https://doi.org/10.1051/0004-6361:20042437

105.M. Szymczak, P. Wolak, A. Bartkiewicz, and K. Borkowski, “The Torun catalogue of 6.7 GHz methanol masers,” Astron. Nachr. 333, 634–639 (2012).
https://doi.org/10.1002/asna.201211702

106.A. Traficante, G. A. Fuller, N. Peretto, J. E. Pineda, and S. Molinari, “The initial conditions of stellar protocluster formation. II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15° ≤ l ≤ 55°” Mon. Not. R. Astron. Soc. 451, 3089–3106 (2015).
https://doi.org/10.1093/mnras/stv1158

107.J. S. Urquhart, T. J. Moore, M. G. Hoare, S. L. Lumsden, R. D. Oudmaijer, J. M. Rathborne, J. C. Mottram, and J. J. Stead, “The red MSX source survey: Distribution and properties of a sample of massive young stars,” Mon. Not. R. Astron. Soc. 410, 1237–1250 (2011).
https://doi.org/10.1111/j.1365-2966.2010.17514.x

108.J. S. Urquhart, T. J. Moore, K. M. Menten, C. Konig, F. Wyrowski, M. A. Thompson, S. Leurini, and D. J. Eden, “The almost ubiquitous association of 6.7-GHz methanol masers with dust,” Mon. Not. R. Astron. Soc. 446. 3461–3477 (2015).
https://doi.org/10.1093/mnras/stu2300

109.I. E. Val’tts, A. M. Dzura, S. V. Kalenskii, V. I. Slysh, R. S. Booth, and A. Winnberg, “The discovery of methanol masers at 107 GHz,” Astron. Astrophys. 294, 825–830(1995).

110.I. E. Val’tts, S. P. Ellingsen, V. I. Slysh, S. V. Kalenskii, R. Otrupcek, and G. M. Larionov, “Detection of new sources of methanol emission at 95 GHz with the Mopra Telescope,” Mon. Not. R. Astron. Soc. 317, 315–332(2000).
https://doi.org/10.1046/j.1365-8711.2000.03518.x

111.I. E. Val’tts and G. M. Larionov, “A general catalog of class I methanol masers,” Astron. Rep. 51, 519–530 (2007).
https://doi.org/10.1134/S1063772907070013

112.H. M. de Villiers, A. Chrysostomou, M. A. Thompson, S. P. Ellingsen, J. S. Urquhart, S. L. Breen, M. G. Burton, T. Csengeri, and D. Ward-Thompson, “Methanol maser associated outflows: Detection statistics and properties,” Mon. Not. R. Astron. Soc. 444, 566–585 (2014).
https://doi.org/10.1093/mnras/stu1474

113.T. L. Wilson, C.M. Walmsley, P. R. Jewell, and L. E. Snyder, “Detection of a new type of methanol maser,” Astron. Astrophys. 134, L7–L10 (1984).

114.J. G. A. Wouterloot and J. Brand, “IRAS sources beyond the solar circle. I. CO observations,” Astron. Astrophys., Suppl. Ser. 80, 149–187 (1989).

115.J. Wu, N. J. Evans, and Y. L. Shirley, “The properties of massive, dense clumps: Mapping surveys of HCN and CS,” Astrophys. J. Suppl. Ser. 188, 313–357 (2010).
https://doi.org/10.1088/0067-0049/188/2/313

116.Y. Wu, M. Huang, and J. He, “A Catalogue of high velocity molecular outflows,” Astron. Astrophys. Suppl. Ser. 115, 283–284 (1996).

117.Y. Wu, J. Wu, and J. Wang, “A search for massive dense cores with 13CO J = l–0 line,” Astron. Astrophys. 380, 665–672 (2001).
https://doi.org/10.1051/0004-6361:20011498

118.Y. W. Wu, M. Sato, M. J. Reid, L. Moscadelli, Y. Xu, A. Brunthaler, K. Menten, and X. W. Zheng, “Trigonometric parallaxes of star-forming regions in the Sagittarius spiral arm,” Astron. Astrophys. 566, A17 (2014).
doi 10.1051/0004-6361/ 201322765

119.Y. W. Wu, Y. Xu, J. D. Pandian, J. Yang, C. Henkel, K. M. Menten, and S. B. Zhang, “Ammonia and CO observations toward low-luminosity 6.7 GHz methanol masers,” Astrophys. J. 720, 392–408 (2010).
https://doi.org/10.1088/0004-637X/720/1/392

120.Y.-W. Wu, Y. Xu, and J. Yang, “Multiwavelength study of low-luminosity 6.7-GHz methanol masers,” Res. Astron. Astrophys. 11, 137–155 (2011).
https://doi.org/10.1088/1674-4527/11/2/002

121.Y. Xu, J. J. Li, M. J. Reid, K. Menten, X. W. Zheng, A. Brunthaler, L. Moscadelli, and B. Zhang, “On the nature of the local spiral arm of the Milky Way,” Astrophys. J. 769, 15 (2013).
https://doi.org/10.1088/0004-637X/769/1/15

122.Y. Xu, M. J. Reid, K. Menten, A. Brunthaler, X. W. Zheng, L. Moscadelli, “Trigonometric parallaxes of massive star-forming regions: III. G59.7+0.1 and W51IRS2,” Astrophys. J. 693, 413–418 (2009).
https://doi.org/10.1088/0004-637X/693/1/413

123.Y. Xu, X.-W. Zheng, and D. -R. Jiang, “Statistical properties of 6.7 GHz methanol maser sources,” Chin. J. Astron. Astrophys. 3, 49–68 (2003).
https://doi.org/10.1088/1009-9271/3/1/49

124.W. Yang, Y. Xu, X. Chen, S. P. Ellingsen, D. Lu, and Y. Li, “A new 95 GHz methanol maser catalog. I. Data,” Astrophys. J., Suppl. Ser. 231, 20 (2017).
https://doi.org/10.3847/1538-4365/aa6ff3

125.L. Moscadelli, M. Sato, M. J. Reid, K. Menten, X. W. Zheng, A. Brunthaler, T. M. Dame, Y. Xu, and K. Immer, “The parallax of W43: A massive star-forming complex near the galactic bar,” Astrophys. J. 781, 89 (2014).
https://doi.org/10.1088/0004-637X/781/2/89

126.M. J. Reid, K. Menten, X. W. Zheng, A. Brunthaler, and Y. Xu, “Parallaxes for W49N and G048.60+0.02: Distant star forming regions in the Perseus spiral arm,” Astrophys. J. 775, 79 (2013).
https://doi.org/10.1088/0004-637X/775/1/79

127.I. Zinchenko, V. Forsstroem, A. Lapinov, and K. Mattila, “Studies of dense molecular cores in regions of massive star formation. CS (J = 2–1) and HCN (J = l–0) observations of 11 northern cores,” Astron. Astrophys. 288, 601–616 (1994).

128.S. Y. Zubrin and V. M. Shulga, “The 95 GHz methanol maser towards the supernova remnant Kes 79” in Proc. 15th Young Scientists’ Conf. on Astronomy and Space Physics, Kyiv, Ukraine, Apr. 14–19, 2008 (Kyiv. Nats. Univ. Im. T. Shevchenka, Kyiv, 2008), pp. 41–43.