Spatial structure of gravity waves in the solar photosphere

Heading: 
1Stodilka, MI
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(4):3-17
Start Page: Solar Physics
Language: Russian
Abstract: 

Using some results of observations in the Fe I line we reproduced spatial-time variations of the pressure in the solar photosphere. Local internal gravity waves (IGW) were extracted by the corresponding filtration. A procedure for the determination of phase velocities of IGW from 1D observations was developed. We determined horizontal and vertical projections of IGW phase velocities for various periods. It was shown that phase velocity is significantly reduced with a decrease of the gravity wave oscillation frequency. For gravity waves with periods from 5 to 60 min their horizontal wavelenghts are of the same order as granulation scales. Some dispersion properties of gravity waves were studied.

Keywords: photosphere, Sun, waves of gravitation
References: 

1.E. E. Dubov, “Oscillations and waves in the solar atmosphere,” Itogi Nauki Tekh., Ser.: Astron. 14, 148–266 (1978).

2.M. I. Stodilka, “Some peculiarities in excitation and propagation of the gravity waves in solar photosphere,” Kinematics Phys. Celestial Bodies 28, 149–154 (2012).
https://doi.org/10.3103/S0884591312030087

3.M. I. Stodilka, “Spatial structure of gravity waves in the solar photosphere,” Kinematics Phys. Celestial Bodies 28, 162–168 (2012).
https://doi.org/10.3103/S088459131204006X

4.M. I. Stodilka, “The inverse problem for a study of solar and stellar atmosphere inhomogeneities,” J. Phys. Stud. 6, 435–442 (2002).

5.M. I. Stodilka, “Tikhonov stabilizers in inverse problems of spectral studies,” Kinematika Fiz. Nebesnykh Tel 19, 334–343 (2003).

6.M. Asplund, H. G. Ludwig, and R. F. Stein, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation,” Astron. Astrophys. 359, 669–681 (2000).

7.N. Bello González, M. Flores Soriano, F. Kneer, and O. Okunev, “Acoustic waves in the solar atmosphere at high spatial resolution,” Astron. Astrophys. 508, 941–950 (2009).
https://doi.org/10.1051/0004-6361/200912275

8.N. Bello González, M. Flores Soriano, F. Kneer, O. Okunev, and N. Shchukina, “Acoustic waves in the solar atmosphere at high spatial resolution. II. Measurement in the Fe I 5434” Astron. Astrophys. 522, A31 (2010).
https://doi.org/10.1051/0004-6361/201014052

9.J. A. Bonet, I. Márquez, M. Vázquez, and H. Wöhl,, “Asymmetries and shifts of the solar K I 7699 possible evidence for gravity waves in the quiet photosphere,” Astron. Astrophys. 244, 492–500 (1991).

10.L. M. B. C. Campos, “On magnetoacoustic-gravity-inertial (MAGI) waves—I. Generation, propagation, dissipation and radiation,” Mon. Not. R. Astron. Soc. 410, 717–734 (2011).
https://doi.org/10.1111/j.1365-2966.2010.17553.x

11.F.-L. Deubner and B. Fleck, “Dynamics of the solar atmosphere. I. Spatio-temporal analysis of waves in the quiet solar atmosphere,” Astron. Astrophys. 213, 423–428 (1989).

12.B. Dintrans, A. Brandenburg, A. Nordlund, and R. F. Stein, “Stochastic excitation of gravity waves by overshooting convection in solar-type stars,” Astrophys. Space Sci. 284, 237–240 (2003).
https://doi.org/10.1023/A:1023299804687

13.B. Dintrans, A. Brandenburg, A. Nordlund, and R. F. Stein, “Spectrum and amplitudes of internal gravity waves excited by penetrative convection in solar-type stars,” Astron. Astrophys. 438, 365–376 (2005).
https://doi.org/10.1051/0004-6361:20052831

14.B. Fleck, T. Straus, S. Jefferies, and P. Scherrer, “Estimating the energy flux of acoustic-gravity waves in the solar atmosphere from SDO/HMI Data,” presented at the AGU Fall Meeting (San Francisco, California, USA, 2010), abstract No. SH11A-1602.

15.W. Kalkofen, P. Rossi, G. Bodo, and S. Massaglia, “Acoustic waves in a stratified atmosphere. IV. Three-Dimensional nonlinear hydrodynamics,” Astron. Astrophys. 520, A100 (2010).
https://doi.org/10.1051/0004-6361/200912996

16.R. Komm, W. Mattig, and A. Nesis, “The decay of granular motions and the generation of gravity waves in the solar photosphere,” Astron. Astrophys. 252, 827–834 (1991).

17.R. I. Kostyk, N. G. Shchukina, and E. V. Khomenko, “Fine structure of wave motions in the solar photosphere: observations and theory,” Astron. Rep. 50, 588–600 (2006).
https://doi.org/10.1134/S1063772906070092

18.N. Kumar and A. Kumar, “Non-adiabatic MHD modes in periodic magnetic medium,” presented at the 38th COSPAR Scientific Assembly (Bremen, Germany, 2010), paper No. D22-0057-10.

19.J. Leenaarts and S. Wedemeyer-Böhm, “DOT tomography of the solar atmosphere. III. Observations and simulations of reversed granulation,” Astron. Astrophys. 431, 687–692 (2005).
https://doi.org/10.1051/0004-6361:20041714

20.Y.-Q. Lou, “Gravito-acoustic wave transformation in stellar atmospheres,” Mon. Not. R. Astron. Soc. 276, 769–784 (1995).

21.B. W. Mihalas and J. Toomre, “Internal gravity waves in the solar atmosphere. I. Adiabatic waves in the chromosphere,” Astrophys. J. 249, 349–371 (1981).
https://doi.org/10.1086/159293

22.B. W. Mihalas and J. Toomre, “Internal gravity waves in the solar atmosphere. II. Effects of radiative damping,” Astrophys. J. 263, 386–408 (1982).
https://doi.org/10.1086/160512

23.K. Murawski and E. N. Pelinovski, “The effect of random flow on solar acoustic waves,” Astron. Astrophys. 359, 759–765 (2000).

24.M. Newington and P. Cally, “Reflection and conversion of magnetogravity waves in the solar chromosphere: windows to the upper atmosphere,” Mon. Not. R. Astron. Soc. 402, 386–394 (2010).
https://doi.org/10.1111/j.1365-2966.2009.15884.x

25.M. Newington and P. Cally, “How to turn gravity waves into Alfvén waves and other such tricks,” J. Phys.: Conf. Ser. 271, 012037 (2011).
https://doi.org/10.1088/1742-6596/271/1/012037

26.B. Pintér, “Modelling solar atmospheric gravity oscillation modes,” Astron. Nachr. 329, 503–507 (2008).
https://doi.org/10.1002/asna.200710985

27.E. R. Priest, Geophysics and Astrophysics Monographs. Solar Magnetohydrodynamics (D. Reidel, Dordrecht, 1982), Vol. 21.
https://doi.org/10.1007/978-94-009-7958-1

28.M. Rieutord and F. Rincon, “The Sun’s supergranulation,” Living Rev. Sol. Phys. 7(2), 1–82 (2010).

29.T. M. Rogers and G. A. Glatzmaier, “Gravity waves in the Sun,” Mon. Not. R. Astron. Soc. 364, 1135–1146 (2005).
https://doi.org/10.1111/j.1365-2966.2005.09659.x

30.R. J. Rutten and J. M. Krijger, “Dynamics of the solar chromosphere IV. Evidence for atmospheric gravity waves from TRACE,” Astron. Astrophys. 407, 735–740 (2003).
https://doi.org/10.1051/0004-6361:20030894

31.B. Schmieder, “Linear hydrodynamical equations coupled with radiative transfer in a non-isothermal atmosphere. I. Method,” Sol. Phys. 54, 269–288 (1977).
https://doi.org/10.1007/BF00159919

32.G. Severino, M. Oliviero, T. Straus, and R. K. Ulrich, “Atmospheric gravity waves,” Mem. Soc. Astron. Ital. 74, 595–598 (2003).

33.T. Straus and D. Bonaccini, “Dynamics of the solar photosphere. I. Two-Dimensional spectroscopy of mesoscale phenomena,” Astron. Astrophys. 324, 704–712 (1997).

34.T. Straus, B. Fleck, S. Jefferies, et al., “The energy flux of internal gravity waves in the lower solar atmosphere,” Astrophys. J., Lett. 681, L125–L128 (2008).
https://doi.org/10.1086/590495

35.T. Straus, B. Fleck, S. Jefferies, et al., “On the role of acoustic-gravity waves in the energetics of the solar atmosphere,” in The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding, Ed. by B. Lites, M. Cheung, T. Magara, J. Mariska, and K. Reeves (Astron. Soc. Pac. Conf. Ser., San Francisco, 2009), Vol. 415, pp. 95–98.

36.I. Suleimenov, “Acoustically active layers in middle atmosphere,” presented at the 36th COSPAR Scientific Assembly (Beijing, China, 2006), abstract No. 02218.

37.J. Vernazza, E. Avrett, and R. Loezer, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun,” Astrophys. J., Suppl. Ser. 45, 635–725 (1981).
https://doi.org/10.1086/190731

38.Y. D. Zhugzhda, “Waves in a convective atmosphere: 1D periodical model,” Astron. Astrophys. 332, 314–324 (1998).