Some properties of dispersive Alfven waves. 1. Kinetics (very-low-, intermediate- and low-pressure plasma)

1Malovichko, PP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(6):20-44
Start Page: Space Physics
Language: Russian

The work is devoted to the study of behaviour of dispersive Alfven waves, including inertial and kinetic Alfven waves, in astrophysical plasma of very low, intermediate and low pressure. Some new full solutions are derived. It is shown that the solutions for «ordinary» and inertial Alfven waves are particular cases of the general solution. The influence of astrophysical environment parameters on behaviour and properties of dispersive Alfven waves is analyzed. All of the main wave characteristics are obtained, namely, dispersion, damping, polarization, density perturbation and charge density perturbation. Taking them into account is very important for observations and detection of these waves and for more correct understanding of their behaviour and role in various astrophysical processes of cosmic environment.

Keywords: Alven waves, plasma

1.A. F. Aleksandrov, L. S. Bogdankevich, and A. P. Rukhadze, Fundamentals of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978) [in Russian].

2.Yu. M. Voitenko, A. N. Krishtal’, P. P. Malovichko, and A. K. Yukhimuk, “Generation of kinetic Alfvén waves and their role in coronal loops heating,” Kinem. Fiz. Nebes. Tel 6(2), 61–65 (1990).

3.P. P. Malovichko, “Propagation of Alfvén waves in the boundary region of the plasma sheet of Earth’s magnetosphere tail,” Geomagn. Aeron. 35(6), 89–95 (1995).

4.P. P. Malovichko, “Generation of Alfvén waves in plasma sheet of Earth’s magnetosphere tail,” Kosm. Nauka Tekhnol. 18(5), 41–47 (2012).

5.P. P. Malovichko, A. N. Krishtal’, and A. K. Yukhimuk, “Influence of temperature irregularities on the generation of kinetic Alfvén waves in the Earth’s magnetosphere,” Kinem. Phys. Celest. Bodies 22, 41–45 (2006).

6.A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

7.N. H. Bian, E. P. Kontar, and J. C. Brown, “Parallel electric field generation by Alfvén wave turbulence,” Astron. Astrophys. 519, A114 (2010).

8.J. Birn, A. V. Artemyev, D. N. Baker, M. Echim, M. Hoshino, and L. M. Zelenyi, “Particle acceleration in the magnetotail and aurora,” Space Sci. Rev. 173, 49–102 (2012).

9.V. Chandu, E. S. Devi, R. Jayapal, G. Samuel, S. Antony, and G. Renuka, “The influence of negatively charged heavy ions on the kinetic Alfvén wave in a cometary environment,” Astrophys. Space Sci. 339, 157–164 (2012).

10.C. C. Chaston, J. W. Bonnell, L. Clausen, and V. Angelopoulos, “Energy transport by kinetic-scale electromagnetic waves in fast plasma sheet flows,” J. Geophys. Res.: Space Phys. 117(A9), A09202 (2012).

11.C. C. Chaston, A. J. Hull, J. W. Bonnell, C. W. Carlson, R. E. Ergun, R. J. Strangeway, and J. P. McFadden, “Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora,” J. Geophys. Res.: Space Phys. 112(A5), A05215 (2007).

12.L. Chen and D. J. Wu, “Kinetic Alfvén wave instability driven by field-aligned currents in solar coronal loops,” Astrophys. J. 754, 123 (2012).

13.N. F. Cramer, The Physics of Alfvén Waves (Wiley-VCH, Berlin, 2001).

14.W. Farrell, S. Curtis, M. Desch, and R. P. Lepping, “A Theory for narrow-banded radio bursts at Uranus: MHD surface waves as an energy driver,” J. Geophys. Res.: Space Phys. 97, 4133–4141 (1992).

15.A. Hasegawa and L. Chen, “Kinetic processes in plasma heating by resonant mode conversion of Alfvén wave,” Phys. Fluids 19, 1924–1934 (1976).

16.J. V. Hollweg, “Kinetic Alfvén wave revisited,” J. Geophys. Res.: Space Phys. 104, 14811–14819 (1999).

17.L. C. Jafelice and R. Opher, “Kinetic Alfvén waves in extended radio sources,” Astrophys. Space Sci. 137, 303–315 (1987)

18.T. Kimura, F. Tsuchiya, H. Misawa, A. Morioka, H. Nozawa, and M. Fujimoto, “Periodicity analysis of Jovian quasi-periodic radio bursts based on Lomb-Scargle periodograms,” J. Geophys. Res.: Space Phys. 116(A3), A03204 (2011).

19.E. M. Klatt, P. M. Kintner, C. E. Seyler, K. Liu, E. A. MacDonald, and K. A. Lynch, “SIERRA observations of alfvénic processes in the topside auroral ionosphere,” J. Geophys. Res.: Space Phys. 110(A10), A10S12 (2005).

20.P. P. Malovichko, “Correlation of longitudinal currents with Alfvén wave generation in the solar atmosphere,” Kinem. Phys. Celest. Bodies 23, 185–190 (2007).

21.P. P. Malovichko, “Stability of magnetic configurations in the solar atmosphere under temperature anisotropy conditions,” Kinem. Phys. Celest. Bodies 24, 236–241 (2008).

22.P. P. Malovichko, “Generation of low-frequency magnetic field disturbances in coronal loops by proton and electron beams,” Kinem. Phys. Celest. Bodies 26, 62–70 (2010).

23.K. G. McClements and L. Fletcher, “Inertial Alfvén wave acceleration of solar flare electrons,” Astrophys. J. 693, 1494–1499 (2009).

24.J. J. Podesta and J. M. TenBarge, “Scale dependence of the variance anisotropy near the proton gyroradius scale: Additional evidence for kinetic Alfvén waves in the solar wind at 1 AU,” J. Geophys. Res.: Space Phys. 117(A10), A10106 (2012).

25.C. S. Salem, G. G. Howes, D. Sundkvist, S. D. Bale, C. C. Chaston, C. H. K. Chen, and F. S. Mozer, “Identification of kinetic Alfvén wave turbulence in the solar wind,” Astrophys. J. Lett. 745, L9 (2012).

26.R. P. Sharma and S. Kumar, “Nonlinear excitation of fast waves by dispersive Alfvén waves and solar coronal heating,” Sol. Phys. 267, 141–151 (2010).

27.T. Siversky, Y. Voitenko, and M. Goossens, “Shear flow instabilities in low-beta space plasmas,” Space Sci. Rev. 121, 343–351 (2005).

28.K. W. Smith and P. W. Terry, “Damping of electron density structures and implications for interstellar scintillation,” Astrophys. J. 730, 133 (2011).

29.C. W. Smith, B. J. Vasquez, and J. V. Hollweg, “Observational constraints on the role of cyclotron damping and kinetic Alfvén waves in the solar wind,” Astrophys. J. 745, 8 (2012).

30.K. Stasiewicz, P. Bellan, C. Chaston, et al., “Small scale alfvénic structure in the aurora,” Space Sci. Rev. 92, 423–533 (2000).

31.K. Stasiewicz, C. Seyler, F. Mozer, G. Gustafsson, J. Pickett, and B. Popielawska, “Magnetic bubbles and kinetic Alfvén waves in the high-latitude magnetopause boundary,” J. Geophys. Res.: Space Phys. 106, 29503–29514 (2001).

32.P. W. Terry and K. W. Smith, “Coherence and intermittency of electron density in small-scale interstellar turbulence,” Astrophys. J. 665, 402–415 (2007).

33.X.-G. Wang, L.-W. Ren, J.-Q. Wang, and C.-J. Xiao, “Synthetic solar coronal heating on current sheets,” Astrophys. J. 694, 1595–1601 (2009).

34.S. Whitelam, J. M. A. Ashbourn, R. Bingham, P.K. Shukla, and D.S. Spicer, “Alfvén wave heating and acceleration of plasmas in the solar transition region producing jet-like eruptive activity,” Sol. Phys. 211, 199–219 (2002).

35.D. J. Wu and C. Fang, “Coronal plume heating and kinetic dissipation of kinetic Alfvén waves,” Astrophys. J. 596, 656–662 (2003).

36.D. J. Wu and C. Fang, “Sunspot chromospheric heating by kinetic Alfvén waves,” Astrophys. J. Lett. 659, L181 (2007).