Are the effective polarization measurements in the study of Earth's atmosphere aerosol?

1Morozhenko, OV, 1Vidmachenko, AP, Nevodovskiy, PV, 1Kostogryz, NM
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(1):17-32
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian

It is shown that satellite polarization observations of the Earth at wavelengths more than 300 nm are not effective to determine physical characteristics of aerosol due to the impossibility to properly separate the atmosphere and surface contributions. This is caused by the optical heterogeneity of the surface, changing the aerosol nature over the relief details and difficulties in the prediction of temporal changes of the optical properties of the «atmosphere + surface» system. Observations at wavelengths less than 300 nm are more favourable because the ozone layer absorbs very strongly and makes nearly invisible not only the surface, but also tropospheric layers which are most strongly affected to the horizontal inhomogeneity of optical properties and their temporal variations. Therefore, scanning along individual latitude belts will provide quasi-homogeneous phase dependences of the second Stokes parameter Q(α)(U(α)=0) which are suitable for the assessment of the physical characteristics of the stratospheric aerosol and revealing their changes in the horizontal plane and in time.

Keywords: aerosol, Earth, observation

1.O. I. Bugaenko, Zh. M. Dlugach, A. V. Morozhenko, and E. G. Yanovitskii, “On the optical properties of the cloud layer of Saturn in the visible spectral range,” Astron. Vestn. 9(1), 13–21 (1975).

2.O. I. Bugaenko and A. V. Morozhenko, “Oriented particles in the upper layers of the atmosphere of Saturn,” in Physics of Planetary Atmospheres (Naukova Dumka, Kiev, 1981), pp. 108–112 [in Russian].

3.L. M. Levin, Study on Physics of Turbulent Aerosols (USSR Academy of Sciences Publisher, Moscow, 1961) [in Russian].

4.I. N. Minin, “An optical model of the Martian atmosphere,” Astron. Zh. 44(6), 1284–1295 (1967).

5.A. V. Morozhenko, “Estimation of the atmospheric pressure near the Martian surface from polarimetric observations,” Astron. Tsirkulyar, No. 337, 1–4 (1965).

6.A. V. Morozhenko, “The Martian atmosphere from polarization observations,” Astron. Zh. 46(5), 1087–1094 (1969).

7.A. V. Morozhenko, “Optical parameters of the atmosphere and surface of Mars. 1. The aerosol component of the dust-free atmosphere,” Astron. Vestn. 8(3), 121–127 (1974).

8.A. V. Morozhenko, “A base on the Moon: The Earth global changes,” Kin. Fiz. Nebes. Tel 17(6), 549–559 (2001).

9.A. V. Morozhenko, “Polarimetry of the twilight sky and stratospheric aerosol,” Kin. Phys. Cel. Bodies 26(1), 36–38 (2010).

10.A. V. Morozhenko, A. V. Shavrina, and A. A. Veles’, “A role of the stratospheric aerosol in the formation of the ozone layer,” Kin. Fiz. Nebes. Tel 16(4), 364–368 (2000).

11.O. V. Morozhenko, Methods and Results of Remote Sensing of the Planetary Atmospheres (Naukova Dumka, Kiev, 2004) [in Ukrainian].

12.O. V. Morozhenko and A. P. Vid’machenko, “An observing base on the Moon and the global ecological problem of the Earth,” presented at The Forth Ukrainian Conference on Space Researches (Kiev, 2004), p. 29.

13.O. V. Morozhenko, A. V. Shavrina, and O. O. Veles’, “A concept of the monitoring of the gaseous and aerosol pollution (above 30 km) of the terrestrial atmosphere from the International Space Station,” Kosm. Nauka Tekhnol. 6(2/3), 68–79 (2000).

14.S. P. Nevodovs’kii, A. P. Vid’machenko, O. V. Morozhenko, et al., “The Ukrainian youth satellite: Observations of the aerosols in the terrestrial atmosphere with the UV-polarimeter,” Kosm. Nauka Tekhnol. 10(5/6), 27–32 (2004).

15.P. V. Nevodovskii, A. V. Morozhenko, E. P. Nevodovskii, and M. D. Geraimchuk, “Study of characteristics of stratospheric aerosol by the ultraviolet polarimetry method,” Opt. Spectrosc. 107(2), 217–220 (2009).

16.G. V. Rozenberg, Twilight (Fizmatgiz, Moscow, 1963) [in Russian].

17.V. V. Sobolev, “Study of the atmosphere of Venus. II,” Astron. Zh. 45(1), 169–176 (1968).

18.V. P. Tishkovets, “Multiple scattering of electromagnetic waves by discrete random media,” Doctoral Dissertation in Mathematics and Physics (Khar’kov, 2009).

19.N. A. Fuks, Mechanics of Aerosols (USSR Academy of Sciences Publisher, Moscow, 1955) [in Russian].

20.O. S. Ugol’nikov and I. A. Maslov, “Study of the atmospheric aerosols in a wide altitude range from the polarization measurements of the twilight sky,” presented at Polarization Optics: The International Conference Devoted to the 50th Anniversary of the MSI Electronic Technique Faculty (Moscow, 2008), pp. 97–98.

21.Ya. S. Yatskiv, M. I. Mishchenko, V. K. Rozenbush, et al., “Project “Aerosol-UA”: Remote sensing of aerosols in the terrestrial atmosphere from a satellite,” Kosm. Nauka Tekhnol. 18(4), 3–15 (2012).

22.J. M. Ajello, K. D. Pang, A. L. Lane, et al., “Mariner 9 ultraviolet spectrometer experiment: bright-limb observations of the lower atmosphere of Mars,” J. Atmos. Sci. 33(3), 544–552 (1976).<0544:MUSEBL>2.0.CO;2

23.D. L. Coffeen, “A polarimetric study of the atmosphere of Venus,” Thesis for PhD Degree (Tucson, Univ. Arizona, 1968).

24.B. Conrath, “Thermal structure of the Martian atmosphere during the dissipation of the dust storm 1971,” Icarus 24(1), 36–46 (1975).

25.A. Dollfus and E. Bowell, “Polarimetric properties of the lunar surface and its interpretation. Part 1. Telescopic observations,” Astron. Astrophys. 10(1), 29–53 (1971).

26.J. S. Farman, B. C. Gardiner, and J. D. Ahanrlin, “Large losses of ozone in Antarctica reveal seasonal ClOx/NOx interaction,” Nature 315(1), 207–210 (1985).

27.F. F. Forbes and P. A. Welch, “The infrared polarization of the Moon,” Communs Lunar and Planet. Lab. 73(24), 105–110 (1968).

28.J. Hansen, “Climate forcings and feedbacks,” in Proceedings of the Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks, Ed. by J. Hansen, W. Rossow, and I. Fung (NASA GISS, New York, 1992), pp. 6–12.

29.J. E. Hansen and A. Arking, “Clouds of Venus: Evidence for their nature,” Science 171(3972), 669–672 (1971).

30.J. E. Hansen and J. W. Hovenier, “Interpretation of the polarization or Venus,” J. Atmos. Sci. 31(4), 1137–1160 (1974).<1137:IOTPOV>2.0.CO;2

31.D. R. Hanson, A. R. Ravinshankara, and S. Solomon, “Heterogeneous reactions in sulfuric oxide aerosols: A framework for model calculations,” J. Geophys. Res. 99(7), 3617–3628 (1994).

32.A. P. Ingersol, “Polarization measurements of Mars and Mercury: Rayleigh scattering in the Martian atmosphere,” Astrophys. J. 163(1), 121–130 (1971).

33.G. M. Kattawar and L. D. C. Young, “Scattering in the atmosphere of Venus. II. Effects of varying the scale height of the scattering particles,” Icarus 30(1), 179–185 (1977).

34.G. M. Keateang, “The response of ozone to solar activity variations: A review,” Solar Phys. 74(2), 321–347 (1981).

35.W. A. Lane, Ch. W. Hord, R. A. West, et al., “Photopolarimetry from Voyager 2. Preliminary results on Saturn, Titan, and rings,” Science 215(4532), 537–543 (1982).

36.C. B. Leovy, C. A. Briggs, A. T. Young, et al., “The Martian atmosphere: Mariner 9 television experiment progress report,” Icarus 17(2), 373–393 (1972).

37.C. B. Leovy, B. A. Smith, A. T. Young, and R. B. Leighton, “Mars atmosphere during the Mariner 9 extended mission: Television results,” J. Geophys. Res. 78(2), 4253–4266 (1973).

38.G. Videen, Q. Fu, and P. Chyleck, “Light Scattering by Nonspherical Particles: Halifax Contributions,” (Army Research Laboratory, Adelphi, Maryland, 2000).

39.R. S. Lindzen, “Tides and gravity waves in the upper atmosphere,” in Mesospheric Models Sand Related Experiments, Ed. by D. Fiocco (Hingham Massachusets, Reidel, 1971), pp. 122–130.

40. Proceedings of the Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks, Ed. by J. Hansen, W. Rossow, and I. Fung (NASA GISS, New York, 1992).

41.B. Lyot, “Recherches sur la polarization de la lumiere des planetes et de quelgues substance terresters,” Ann. Observ. Meudon 29(1), 1–161 (1929).

42.A. V. Morozhenko and E. G. Yanovitskij, “The optical properties of Venus and the Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18(3), 583–592 (1973).

43.B. T. O’Leary, “Venus: Vertical structure of stratospheric hazes from Mariner 10 pictures,” Atmos. Sci. 32, 1091–1100 (1975).<1091:VVSOSH>2.0.CO;2

44.K. Rages, R. Beebe, and D. Senske, “Jovian stratospheric hazes: The high phase view from Galileo,” Icarus 139(2), 211–226 (1999).

45.G. C. Reinzel, G. C. Tiao, J. J. DeLuisi, et al., “Analysis of upper stratospheric umkehr ozone profile data for trends and the effect of stratospheric aerosols,” J. Geophys. Res. 89, 4833–4840 (1984).

46.M. Sato, J. E. Hansen, M. P. McCormick, and J. B. Pollack, “Stratospheric aerosol optical depth, 1850–1990,” J. Geophys. Res. 98(22), 22987–22994 (1993).

47.G. C. Tiao, G. C. Reinzel, J. H. Pedrick, et al., “A statistical trend analysis of ozonesonde data,” J. Geophys. Res. 91, 13121–13136 (1986).

48.L. Travis, “Earth observing scanning polarimeter,” in Proceedings of the Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks, Ed. by J. Hansen, W. Rossow, and I. Fung (NASA GISS, New York, 1992), pp. 40–46.