Quantitative analysis of atmospheric density models applicable to the determination of artificial satellite deceleration

1Zhaborovskyi, VP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(6):71-78
Start Page: Earth's Rotation and Geodynamics
Language: Ukrainian

For determination of Earth orientation parameters from satellite laser ranging their motion should be modelled with the precision of the ranging (from 3 to 5 mm). For low Earth orbits (1000 km or lower) the procedure needs taking account of the atmospheric deceleration force. Precise values of the atmosphere density are the main difficulty there. There are a lot of atmosphere density models for heights up to 1500 km. We consider the empirical atmosphere density models NRL-MSISE-00, DTM-2012, and JB2008 which are widely used to solve the problem. Our quantitative analysis of the precision models is given and some recommendations for the use of the models in space geodynamics are formulated.

Keywords: atmosphere, density, Earth, laser observation

1.GOST 25645.11584, “Earth upper atmosphere,” in Density Model for Project Ballistic Computations of Artificial Earth Satellites, 24.08.84. (M., 1984)

2.B. R. Bowman, B. R. Bowman, W. K. Tobiska, F. Marcos, and C. Huang, “A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices,” in 37th COSPAR Scientific Assembly, Held 13–20 July 2008, in Montreal, Canada (2008), p. 367.

3.S. L. Bruinsma, N. Sanchez-Ortiz, E. Olmedo, and N. Gujarro, “Evaluation of the DTM-2009 thermosphere model for benchmarking purposes,” J. Space Weather Space Clim 2, A04 (2012).

4.S. L. Bruinsma, G. Thuillier, and F. Barlier, “The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties,” Journal of Atmospheric and Solar-Terrestrial Physics 65, 1053–1070 (2003).

5.J. O. Cappellari, C. E. Velez, and A. J. Fuchs, Mathematical Theory of the Goddard Trajectory Determination System, GSFC Document X-582-76-77, Greenbelt, 1976.

6.V. Ya. Choliy, “On the extension of Helmert transform,” AASP 4, 3–10 (2014).

7.D. P. Drob, J. T. Emmert, G. Crowley, et al., “An empirical model of the Earth’s horizontal wind field: HWM07,” Journal of Geophysical Research 113, A12304, (2008) doi:10.1029/2008JA013668.

8.C. G. Justus, A. Duvall, and V. W. Keller, “Trace constituent updates in the marshall engineering thermosphere and global reference atmospheric model,” COSPAR, Advances in Space Research 38, 2429–2432 (2006).

9.H. Landau and D. Hagmeier, “Analysis of the required force modeling for NAVSTAR GPS satellites,” Studiengang Vermessungswesen, Schriftenreihe UniBw 19, 193–208 (1986).

10.O. Montenbruck, E. Gill, and Fh. Lutze, “Satellite Orbits-Models, Methods, and Applications,” Applied Mechanics Reviews 55(2) B27 (2000).

11.J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues,” Journal of Geophysical Research 107(A12), SIA 15–1 (2002).

12.G. Seeber, Satellite Geodesy (Berlin, New York, 2003).

13.M. F. Storz, B. R. Bowman, J. I. Branson, S.J., et al., “High accuracy satellite drag model (HASDM),” Advances in Space Research 36(12), 2497–2505 (2005).

14.V. V. Tkachuk and V. Ya. Choliy, “On the comparison of fundamental numerical ephemeredes,” Advances in Astronomy and Space Phisics 3(2), 141–144 (2013).

15.D. Vallado and D. Finkleman, A Critical Assessment of Satellite Drag and Atmospheric Density Modeling (Center for Space Standards and Innovation, Colorado Springs, Colorado), p. 80920.

16.V. P. Zhaborovskyy, V. Ya. Choliy, “KyivGeodynamics++: software for processing satellite laser ranging data,” Proceeding of 17th YSC (Kyiv, 2011).