On the small-scale alpha-squared effect in the convection zone of the Sun

1Krivodubskij, VN
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2015, 31(2):3-20
Start Page: Solar Physics
Language: Russian

We give a review of self-organization phenomena of the macroscopic structures in nature which are caused by negative turbulent viscosity, the essence of which is the transfer of the energy of the helical turbulent motions from small eddies to large ones. The effect of the helical negative turbulent diffusion (small-scale α2-effect by Kraichnan) arising in the strong helical turbulent highly-conductive liquid in the large-scale inhomogeneous magnetic field is considered. The effect has the property to “pull” continuous magnetic field in the discrete structures. Our calculations for the two models of the solae convection zone showed that in the deep layers there are favorable conditions for the emergence of helical negative turbulent diffusion effect. Under the assumption that the lifetime of helical structures τ2 is equal to the lifetime of convective cells τ1, the calculated values of the coefficient of negative helical magnetic turbulent diffusion ηαΤ reach two-thirds of the positive value of the turbulent diffusion coefficient ηΤ . This would be favourable to the self-organization of the initially weak continuous magnetic fields in the thin isolated magnetic flux tubes.

Keywords: Sun, αE2-effect

1.A. A. Avramenko, B. I. Basok, A. I. Tyrnov, and A. V. Kuznetsov, “Effect of the negative turbulent viscosity,” Prom. Teplotekh., No. 1, 12–14 (2007).

2.T. Yu. Antonov and P. G. Frik, “Cascade processeses and scaling in the class of models of MHD turbulence,” Mat. Model. Sist. Protsessov, No. 8, 4–10 (2000).

3.S. I. Braginskij, “Theory of hydromagnetic dynamo,” Zh. Eksp. Teor. Fiz. 47, 2178–2193 (1964).

4.B. P. Budaev, S. P. Savin, and L. M. Zelenyj, “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features,” Phys.-Usp. 54, 905–952 (2011).

5.S. I. Vainstein, Ya. B. Zel’dovich, and A. A. Ruzmaikin, Turbulent Dynamo in Astrophysics (Nauka, Moscow, 1980) [in Russian].

6.N. N. Gor’kavyi and A. M. Fridman, “The physics of planetary rings,” Phys.-Usp. 33, 95–133 (1990).

7.Ya. B. Zel’dovich, “Magnetic field at the two-dimensional motion of a conducting fluid,” Zh. Eksp. Teor. Fiz. 31, 154–156 (1956).

8.V. D. Zimin and P. G. Frik, Turbulent Convection (Nauka, Moscow, 1998) [in Russian].

9.L. V. Kozak, R. I. Kostyk, and O. K. Cheremnykh, “Two spectra of turbulence of the Sun,” Kinematics Phys. Celestial Bodies 29, 66–70 (2013).

10.A. N. Kolmogorov, “Local structure of a turbulence in an incompressible viscous fluid at very high Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 299–303 (1941).

11.V. N. Krivodubskij, “On the turbulent conductivity and magnetic permeability of the solar plasma,” Soln. Dannye 7, 99–109 (1982).

12.Yu. P. Ladikov-Roev and O. K. Cheremykh, Mathematical Models of Continuous Media (Naukova Dumka, Kiev, 2010) [in Russian].

13.L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

14.A. I. Lebedinsky, “Rotation of the Sun,” Astron. Zh. 18(1), 10–25 (1941).

15.S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, et al., “Theory of emergence of large-scale structures in a hydromagnetic turbulence,” Zh. Eksp. Teor. Fiz. 85, 1979–1987 (1983).

16.M. I. Rabinovich and M. M. Sushik, “Coherent structures in turbulent flows,” in Ninlinear Waves: Selforganisation (Nauka, Moscow, 1983), pp. 56–85 [in Russian].

17.V. I. Abramenko, V. Carbone, V. Yurchyshyn, et al., “Turbulent diffusion in the photosphere as derived from photospheric bright point motion,” Astrophys. J. 743, 139–148 (2011).

18.L. Biermann, “Bemerkungen über das Rotationsgesetz in irdischen und stellaren Instabilitätszonen,” Z. Astrophys. 28, 304–309 (1951).

19.D. Biscamp, “Cascade model for magnetohydrodynamic turbulence,” Phys. Rev. E 50, 2702–2711 (1994).

20.E. Devlen, A. Brandenburg, and D. Mitra, “A mean field dynamo from negative eddy diffusivity,” Mon. Not. R. Astron. Soc. 432, 1651–1657 (2013).

21.W. Ebeling and Yu. L. Klimontovich, Selforganization and Turbulence in Liquids (Teubner, Leipzig, 1984).

22.M. J. Feigenbaum, “The onset spectrum of turbulence,” Phys. Lett. A 74, 375–378 (1979).

23.C. E. Fischer, A. G. de Wijn, R. Centeno, et al., “Statistics of convective collapse invents in the photosphere and chromosphere observed with the Hinode SOT”, Astron. Astrophys. 504, 583–588 (2009).

24.P. Frick and D. Sokoloff, “Cascade and dynamo action in a shell model of MHD turbulence,” Phys. Rev. E 57 154–182 (1998).

25.U. Frisch, A. Pouquet, I. Leorat, and A. Mazure, “Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence,” J. Fluid Mech. 68, 769–778 (1975).

26.A. V. Getling and A. A. Buchnev, “Some structural of the convective-velocity field in the solar photosphere,” Astron. Rep. 54, 254–259 (2010).

27.E. G. Gibson, The Quiet Sun (NASA, Washington, 1973).

28.H. Haken, Advanced Synergetics (Springer-Verlag, Berlin, 1983).

29.R. Howe, J. Christensen-Dalsgaard, F. Hill, et al., “Dynamic variations at the base of the solar convection zone,” Science 287, 2456–2460 (2000).

30.B. W. Kerr and G. L. Darkow, “Storm-relative winds and helicity in the tornadic thunderstorm environment,” Weather Forecasting 11, 489–505 (1996).

31.A. V. Kolesnichenko, “A synergetic approach to the description of advanced turbulence,” Sol. Syst. Res. 36, 107–124 (2002).

32.A. V. Kolesnichenko, “On the simulations of helical turbulence in an astrophysical non-magnetic disk,” Sol. Syst. Res. 45, 246–263 (2011).

33.A. V. Kolesnichenko and M. Ya. Marov, “The effect of spirality of turbulence in the solar protoplanetary cloud,” Sol. Syst. Res. 41, 1–18 (2007).

34.A. V. Kolesnichenko and M. Ya. Marov, “Magnetohydrodynamic simulation of the protoplanetary disk of the Sun,” Sol. Syst. Res. 43, 410–433 (2009).

35.R. H. Kraichnan, “Internal-range spectrum of hydrodynamic turbulence,” Phys. Fluids 8, 1385–1387 (1965).

36.R. H. Kraichnan, “Helical turbulence and absolute equilibrium,” J. Fluid Mech. 59, 745–752 (1973).

37.R. H. Kraichnan, “Diffusion of weak magnetic fields by isotropic turbulence,” J. Fluid Mech. 75, 657–676 (1976).

38.R. H. Kraichnan, “Diffusion of passive-scalar and magnetic fields by helical turbulence,” J. Fluid Mech. 77, 753–774 (1976).

39.F. Krause and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Academie, Berlin, 1980).

40.V. N. Krivodubskij, “Intensity of sources of magnetic fields of the solar αΩ-dynamo,” Sov. Astron. 28, 316–320 (1984).

41.V. N. Krivodubskij, “Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone,” Astron. Rep. 42, 22–126 (1998).

42.V. N. Krivodubskij, “The structure of the global solar magnetic fields excited by the turbulent dynamo mechanism,” Astron. Rep. 45, 738–745 (2001).

43.V. N. Krivodubskij, “Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone,” Astron. Nachr. 326, 61–74 (2005).

44.V. N. Krivodubskij, “Turbulent effects of sunspot magnetic field reconstruction,” Kinematics Phys. Celestial Bodies 28, 232–238 (2012).

45.S. Nagata, S. Tsuneta, Y. Suematsu, et al., “Formation of solar magnetic flux tubes with kilogauss field strength ionduced by convective instability,” Astrophys. J. Lett. 677, L145–L147 (2008).

46.L. J. November, J. Toomre, K. V. Gebbie, and G. W. Simon, “The detection of mesogranulation on the Sun,” Astrophys. J. 245, L123–L126 (1981).

47.E. N. Parker, “Hydromagnetic dynamo models,” Astrophys. J. 122, 293–314 (1955).

48.E. N. Parker, Cosmic Magnetic Fields (Oxford Univ. Press, Oxford, 1979).

49.Y. Pomeau and P. Manneville, “Intermittent transition to turbulence in dissipative dynamical systems,” Commun. Math. Phys. 74, 189–197 (1980).

50.E. R. Priest, Solar Magnetohydrodymamics (D. Reidel, Dordrecht, Netherlands, 1982).

51.G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: from Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977).

52.K.-H. Rädler, “Zur Elektrodynamik turbulent bewegtern leitender Medien,” Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 23, 1841–1860 (1968).

53.L. R. B. Rubio, I. R. Hidalgo, M. Collados, et al., “Observation of convective collapse and upward-moving shocks in the quiet Sun,” Astrophys. J. 560, 1010–1019 (2001).

54.G. Rüdiger, “On negative eddy viscosity in MHD turbulence,” Magnetohydrodynamics, 16, 1–10 (1980).

55.G. Rüdiger, Differential Rotation and Stellar Convection of the Sun and Solar-Type Stars (Academie, Berlin, 1989).

56.D. Ruelle and F. Takens, “On the nature of turbulence,” Comm. Math. Phys. 20, 167–192 (1971).

57.D. Ruelle and F. Takens, “On the nature of turbulence,” Comm. Math. Phys. 23, 343–344 (1971).

58.G. W. Simon and R. B. Leighton, “Velocity field in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields,” Astrophys. J. 140, 1120–1147 (1964).

59.H. C. Spruit, “A convection zone model,” in Magnetic Flux Tubes and Transport of Heat in the Convection Zone of the Sun: Thesis (Univ. Utrecht, Utrecht, 1977), pp. 17–34.

60.H. C. Spruit and E. G. Zweibel, “Convective instability of thin flux tubes,” Sol. Phys. 62, 15–22 (1979).

61.V. P. Starr, Physics of Negative Viscosity Phenomena (McGraw-Hill, Toronto, 1968).

62.V. P. Starr, N. E. Gaut, and J. A. Copeland, “Angular momentum transport in the solar nebula,” Pure Appl. Geophys. 67, 221–232 (1967).

63.M. Steenbeck and F. Krause, “The generation of stellar and planetary magnetic fields by turbulent dynamo action,” Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 21, 1285–1296 (1966).

64.M. Steenbeck, F. Krause, and K.-H. Rädler, “A calculation of mean electromotive force in electrically conducting fluid in turbulent motion, under the influence of Carioles forces,” Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 21, 369–376 (1966).

65.M. Stix, The Sun: An Introduction, 2nd ed. (Springer, Berlin, 2002).

66.A. R. Webb, B. Roberts, “Vertical motions in an intensive magnetic flux tubes. II. Convective instability,” Sol. Phys. 59, 249–274 (1978).

67.N. O. Weiss, “The expulsion of magnetic flux by eddies,” Proc. R. Soc. London, Ser. A 293, 310–328 (1966).

68.Ya. B. Zeldovich, A. A. Ruzmaikin, and D.D. Sokoloff, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).