Statistics of light curves of a distant source microlensed by a system of point and extended masses

1Sliusar, VM, 1Zhdanov, VI, 1Alexandrov, AN, 1Fedorova, EV
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2015, 31(2):47-58
Start Page: Extragalactic Astronomy
Language: Russian
Abstract: 

We study the gravitational microlensing of a distant source microlensed by a stochastic system of point masses-stars and extended clumps modeling dark matter subhalos. The size of each clump is assumed to be 5 or 10 Einstein radii according to its mass. For each set of initial parameters (optical depth of microlensing, size of the clump) we generated 100 realizations of magnification patterns considering spatially homogeneous distribution of microlenses with the Salpeter mass function. On the basis of this we calculated autocorrelation functions of light curves for different relative contributions of clumps with total optical depth σtot = 0.3. It is found that the dependence of the autocorrelation functions upon the optical depth of the clumps is non-monotonous.

Keywords: gravitational microlensing, point-of-star point system
References: 

1.A. F. Zakharov, Gravitational lenses and microlenses (Yanus-K, Moscow, 1997) [in Russian].

2.A. A. Minakov and V. G. Vakulik, Statistical Analysis of Gravitational Microlensing (Naukova Dumka, Kiev, 2010) [in Russian].

3.V. S. Tsvetkova, V. M. Shulga, V. G. Vakulik, G. V. Smirnov, V. N. Dudinov, and A. A. Minakov, “Search for dark matter using the phenomenon of strong gravitational lensing,” Kinematics Phys. Celestial Bodies 25, 28–37 (2009).
https://doi.org/10.3103/S0884591309010048

4.Ya. S. Yatskiv, A. N. Alexandrov, I. B. Vavilova, et al., General Theory of Relativity: the Tests through Time (MAO Natz. Akad. Nauk Ukr., Kiev, 2005) [in Ukrainian].

5.A. N. Alexandrov, V. M. Sliusar, and V. I. Zhdanov, “Caustic crossing events and source models in gravitational lens systems,” Ukr. J. Phys. 56, 389–400 (2011).

6.A. N. Alexandrov and V. I. Zhdanov, “Asymptotic expansions and amplification of a gravitational lens near a fold caustic,” Mon. Not. R. Astron. Soc. 417, 541–554 (2011).
https://doi.org/10.1111/j.1365-2966.2011.19296.x

7.A. N. Alexandrov, V. I. Zhdanov, and E. V. Fedorova, “Asymptotic formulas for the magnification of a gravitational lens system near a fold caustic,” Astron. Lett. 36, 344–353 (2010).
https://doi.org/10.1134/S1063773710050038

8.V. Berezinsky, V. Dokuchaev, and Yu. Eroshenko, “Remnants of dark matter clumps,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77(8), id. 083519(13) (2008).

9.V. S. Berezinsky, V. I. Docuchaev, and Yu. N. Eroshenko, “Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes,” J. Cosmol. Astropart. Phys., No. 11, id. 059 (2013).

10.D. Clowe, M. Bradac, A. Gonzalez, et al., “A direct empirical proof of the existence of dark matter,” Astrophys. J. 648, L109–L113 (2006).
https://doi.org/10.1086/508162

11.D. Clowe, A. Gonzalez, and M. Markevitch, “Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: direct evidence for the existence of dark matter,” Astrophys. J. 604, 596–603 (2004).
https://doi.org/10.1086/381970

12.A. Del Popolo, “Non-baryonic dark matter in cosmology,” Int. J. Mod. Phys. D 23, id. 1430005 (2014).

13.J. Diemand, B. Moore, and J. Stadel, “Earth-mass dark-matter haloes as the first structures in the early Universe,” Nature 433, 389–391 (2005).
https://doi.org/10.1038/nature03270

14.T. Eichner, S. Seitz, and A. Bauer, “Golden gravitational lensing systems from the Sloan lens ACS Survey-II. SDSS J1430+4105: a precise inner total mass profile from lensing alone,” Mon. Not. R. Astron. Soc. 427, 1918–1939 (2014).
https://doi.org/10.1111/j.1365-2966.2012.22003.x

15.G. Hinshaw, D. Larson, E. Komatsu, et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results,” Astrophys. J., Suppl. Ser. 208, id. 19 (2013).

16.R. Kayser, S. Refsdal, and R. Stabell, “Astrophysical applications of gravitational microlensing,” Astron. Astrophys. 166, 36–48 (1986).

17.A. Klypin, A. V. Kravtsov, O. Valenzuela, et al., “Where are the missing galactic satellites?,” Astrophys. J. 522, 82–92 (1999).
https://doi.org/10.1086/307643

18.F. Li, A. L. Erickcek, and N. M. Law, “A new probe of the small-scale primordial power spectrum: astrometric microlensing by ultracompact minihalos,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, id. 043519 (2012).

19.M. Lowell, V. Eke, C. Frenk, et al., “The haloes of bright satellite galaxies in a warm dark matter universe,” Mon. Not. R. Astron. Soc. 420, 2318–2324 (2012).
https://doi.org/10.1111/j.1365-2966.2011.20200.x

20.L. M. Lubin, C. D. Fassnacht, A. C. S. Readhead, et al., “A Keck survey of gravitational lens systems. I. Spectroscopy of SBS 0909+532, HST 1411+5211, and CLASS B2319+051,” Astrophys. J. 119, 451–459 (2000).

21.B. Moore, S. Ghigna, F. Governato, et al., “Dark matter substructure within galactic halos,” Astrophys. J. 524, L19–L22 (1999).
https://doi.org/10.1086/312287

22.M. J. Mortonson, P. L. Schechter, and J. Wambsganss, “Size is everything: Universal features of quasar microlensing with extended sources,” Astrophys. J. 628, 594–603 (2005).
https://doi.org/10.1086/431195

23.B. Paczynski, “Gravitational microlensing at large optical depth,” Astrophys. J. 301, 503–516 (1986).
https://doi.org/10.1086/163919

24.P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck Collab.), “Planck 2013 results. XVI. Cosmological parameters” (2013). arXiv: 1303.5076

25.E. Salpeter, “The luminosity function and stellar evolution,” Astrophys. J. 121, 161–167 (1955).
https://doi.org/10.1086/145971

26.P. L. Schechter and J. Wambsganss, “Quasar microlensing at high magnification and the role of dark matter: Enhanced fluctuations and suppressed saddle points,” Astrophys. J. 580, 685–695 (2002).
https://doi.org/10.1086/343856

27.P. L. Schechter, J. Wambsganss, and G. F. Lewis, “Qualitative aspects of quasar microlensing with two mass components: Magnification patterns and probability distributions,” Astrophys. J. 613, 77–85 (2004).
https://doi.org/10.1086/422907

28.R. Schmidt, R. L. Webster, and G. F. Lewis, “Weighing a galaxy bar in the lens Q2237 + 0305,” Mon. Not. R. Astron. Soc. 295, 488–496 (1998).
https://doi.org/10.1046/j.1365-8711.1998.01326.x

29.A. Schneider, R. E. Smith, A. V. Macci, and B. Moore, “Nonlinear evolution of cosmological structures in warm dark matter models,” Mon. Not. R. Astron. Soc. 424, 684–698 (2012).
https://doi.org/10.1111/j.1365-2966.2012.21252.x

30.P. Schneider and A. Weiss, “Apparent number density enhancement of quasars near foregroung galaxies due to gravitational lensing — Part two — The amplification probability distribution and results,” MPA Rep. 311, 46–62 (1987).

31.J. M. Shull, “Where do galaxies end?,” Astrophys. J. 784, id. 142 (2014).

32.V. M. Sliusar, V. I. Zhdanov, and A. N. Alexandrov, “Simulations of the gravitational microlensing: extended source models and impact of binary stars,” J. Phys. Stud. 16, 3904-1–3904-8 (2012).

33.V. Springel, J. Wang, M. Vogelsberger, et al., “The Aquarius Project: The subhaloes of galactic haloes,” Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008).
https://doi.org/10.1111/j.1365-2966.2008.14066.x

34.J. Stadel, D. Potter, B. Moore, et al., “Quantifying the heart of darkness with GHALO-a multibillion particle simulation of a galactic halo,” Mon. Not. R. Astron. Soc. 398, L21–L25 (2009).
https://doi.org/10.1111/j.1745-3933.2009.00699.x

35.R. A. Swaters, R. Sancisi, T. S. van Albada, and J. M. van der Hulst, “Are dwarf galaxies dominated by dark matter?,” Astrophys. J. 729, 118–129 (2011).
https://doi.org/10.1088/0004-637X/729/2/118

36.V. S. Tsvetkova, V. G. Vakulik, V. M. Shulga, et al., “PG1115+080: variations of the A2/A1 flux ratio and new values of the time delays,” Mon. Not. R. Astron. Soc. 406, 2764–2776 (2010).
https://doi.org/10.1111/j.1365-2966.2010.16882.x

37.A. V. Tuntsov and G. F. Lewis, “Microlensing in phase space — II. Correlations analysis,” Mon. Not. R. Astron. Soc. 370, 105–120 (2006).
https://doi.org/10.1111/j.1365-2966.2006.10422.x

38.G. van de Ven, J. Falcon-Barroso, R. M. McDermid, et al., “The Einstein cross: Constraint on dark matter from stellar dynamics and gravitational lensing,” Astrophys. J. 719, 1481–1496 (2010).
https://doi.org/10.1088/0004-637X/719/2/1481

39.J. Wambsganss, “Probability distributions for the magnification of quasars due to microlensing,” Astrophys. J. 386, 19–29 (1992).
https://doi.org/10.1086/170987

40.J. Wambsganss, B. Paczynski, and P. Schneider, “Interpretation of the microlensing event in QSO 2237+0305,” Astrophys. J. 358, L33–L36 (1990).
https://doi.org/10.1086/185773

41.E. Zackrisson, S. Asadi, K. Wiik, et al., “Hunting for dark halo substructure using submilliarsecond-scale observations of macrolensed radio jets,” Mon. Not. R. Astron. Soc. 431, 2172–2183 (2013).
https://doi.org/10.1093/mnras/stt303

42.E. Zackrisson and T. Riehm, “Gravitational lensing as a probe of cold dark matter subhalo,” Adv. Astron. 2010, id. 478910(14) (2010).

43.A. Zakharov, “Lensing by exotic objects”, General Relativity and Gravitation. 42, 2301–2322 (2010)
https://doi.org/10.1007/s10714-010-1021-5

44.V. I. Zhdanov, A. N. Alexandrov, E. V. Fedorova, and V. M. Sliusar, “Analytical methods in gravitational microlensing,” Int. Scholarly Res. Not. Astron. Astrophys. 2012, id. 906951(21) (2012).