Fourier analysis of spectra of solar-type stars
1Sheminova, VA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(5):27-48 |
https://doi.org/10.15407/kfnt2017.05.027 |
Start Page: Physics of Stars and Interstellar Medium |
Language: Russian |
Abstract: We used Fourier transform techniques to identify macroturbulent velocity. The analysis is done with mictoturbulent velocity and rotation velocity as an unknown quantities. To separate the effects of the star rotation from the macroturbulence effects in the slowly rotating stars, we analyzed mostly the main lobe of the residual Fourier transform of the observed lines. This is most complete case in the Fourier analysis of spectral lines. It has been tested with many lines of the solar spectrum and two stars. Our results satisfactory coincide with the results of other methods. The microturbulent, macroturbulent, rotation velocities results: Sun as the star, 0.85, 2.22, 1.75; HD 10700, 0.58, 1.73, 0.78; HD 1835, 1.16, 3.56, 6.24 km/sec, respectively. Derived macroturbulent velocity decreases with the height in the atmosphere of the Sun and the HD 1835 star. For the HD 10700 star the macroturbulent velocity does not change with the height and their rotation velocity is almost two times less than the one obtained by other methods previously. It is concluded that Fourier transform techniques can be applied to determine the velocities in the atmospheres of solar-type stars with very slow rotation. |
Keywords: Fourier analysis, macroturbulent velocity, solar-type stars, spectral lines |
1.A. S. Gadun and V. A. Sheminova, Preprint No. ITF-88-87P (Institute for Theoretical Physics of the Ukrainian SSR Academy of Sciences, Kiev, 1988).
2.E. A. Gurtovenko and V. A. Sheminova, Preprint No. GAO-97-1P (Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, 1997).
https://arxiv.org/abs/1505.00975.
3.V. A. Sheminova, “Turbulence in the photosphere of the Sun as a star. III. Micro-macroturbulence,” Soln. Dannye 8, 70–77 (1984).
4.V. A. Sheminova, “Macroturbulence and microturbulence in the solar photosphere,” Kinematika Fiz. Nebesnykh Tel 1, 50–52 (1985).
5.V. A. Sheminova and A. S. Gadun, “Fourier analysis of Fe I lines in spectra of the Sun, a Centauri A, Procyon, Arcturus and Canopus,” Kinematika Fiz. Nebesnykh Tel 14, 219–233 (1998).
https://arxiv.org/abs/1004.3286.
6.M. Asplund, N. Grevesse, and A. J. Sauval, “The solar chemical composition,” in Proc. Symp. on Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, Austin, TX, June 17–19, 2004, Ed. by T. G. Barnes III and F. N. Bash (Astron. Soc. Pac., San Francisco, CA, 2005), in Ser.: ASP Conference Series, Vol. 336, pp. 25–38.
7.P. S. Barklem and J. Aspelund-Johansson, “The broadening of Fe II lines by neutral hydrogen collisions,” Astron. Astrophys. 435, 373–377 (2005).
https://doi.org/10.1051/0004-6361:20042469
8.P. S. Barklem, N. Piskunov, and B. J. O’Mara, “A list of data for the broadening of metallic lines by neutral hydrogen collisions,” Astron. Astrophys. Suppl. Ser. 142, 467–473 (2000).
https://doi.org/10.1051/aas:2000167
9.J. W. Brault and O. R. White, “The analysis and restoration of astronomical data via the fast Fourier transform,” Astron. Astrophys. 13, 169–189 (1971).
10.D. H. Bruning, “The applicability of the Fourier convolution theorem to the analysis of late-type stellar spectra,” Astrophys. J. 281, 830–838 (1984).
https://doi.org/10.1086/162162
11.V. Caccin, A. Donati-Falchi, and R. Falciani, “Temperature variations in the solar photosphere. III: Kitt Peak measurements of the variations of photospheric line profiles with the heliographic latitude,” Sol. Phys. 46, 29–52 (1976).
https://doi.org/10.1007/BF00157553
12.J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. and Chem. Ref. Data 35, 1669–1809 (2006).
https://doi.org/10.1063/1.2218876
13.A. S. Gadun and R. I. Kostyk, “Analysis of absorption line profiles in the spectra of the Sun and Procyon — Velocity field and size of inhomogeneities,” Sov. Astron. 34, 260–263 (1990).
14.T. Gehren, K. Butler, L. Mashonkina, J. Reetz, and J. Shi, “Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. I. The solar strong line spectrum,” Astron. Astrophys. 366, 981–1002 (2001).
https://doi.org/10.1051/0004-6361:20000287
15.D. F. Gray, “On the existence of classical microturbulence,” Astrophys. J. 184, 461–472 (1973).
https://doi.org/10.1086/152344
16.D. F. Gray, “Atmospheric turbulence measured in stars above the main sequence,” Astrophys. J. 202, 148–164 (1975).
https://doi.org/10.1086/153960
17.D. F. Gray, The Observation and Analysis of Stellar Photospheres (Wiley, New York, 1976).
18.D. F. Gray, “A test of the micro-macroturbulence model on the solar flux spectrum,” Astrophys. J. 218, 530–538 (1977).
https://doi.org/10.1086/155706
19.D. F. Gray, “The temperature dependence of rotation and turbulence in giant stars,” Astrophys. J. 262, 682–699 (1982).
https://doi.org/10.1086/160461
20.D. F. Gray, “Precise rotation rates for five slowly rotating A stars,” Astron. J. 147, 81 (2014).
https://doi.org/10.1088/0004-6256/147/4/81
21.D. F. Gray and K. I. T. Brown, “The rotation of Arcturus and active longitudes on giant stars,” Publ. Astron. Soc. Pac. 118, 1112–1118 (2006).
https://doi.org/10.1086/507077
22.E. A. Gurtovenko and V. A. Sheminova, “‘Crossing’ method for studying the turbulence in solar and stellar atmospheres. I: Application to the Sun,” Sol. Phys. 106, 237–247 (1986).
https://doi.org/10.1007/BF00158494
23.B. Gustafsson, B. Edvardsson, K. Eriksson, et al., “A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties,” Astron. Astrophys. 486, 951–970 (2008).
https://doi.org/10.1051/0004-6361:200809724
24.K. Hinkle and L. Wallace, “The spectrum of Arcturus from the infrared through the ultraviolet,” in Proc. Symp. on Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, Austin, TX, June 17–19, 2004, Ed. by T. G. Barnes III and F. N. Bash (Astron. Soc. Pac., San Francisco, CA, 2005), in Ser.: ASP Conference Series, Vol. 336, pp. 321–326.
25.J. S. Jenkins, H. R. A. Jones, Y. Pavlenko, et al., “Metallicities and activities of southern stars,” Astron. Astrophys. 485, 571–584 (2008).
https://doi.org/10.1051/0004-6361:20078611
26.R. I. Kostik, “Damping constant and turbulence in the solar atmosphere,” Sol. Phys. 78, 39–57 (1982).
https://doi.org/10.1007/BF00151141
27.F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., “VALD–2: Progress of the Vienna atomic line data base,” Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999).
https://doi.org/10.1051/aas:1999267
28.R. L. Kurucz, “Atlas: A computer program for calculating model stellar atmospheres,” SAO Special Report No. 309 (Smithson. Astrophys. Obs., Cambridge, MA, 1970).
29.L. Mashonkina, T. Gehren, J.-R. Shi, et al., “A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars,” Astron. Astrophys. 528, A87 (2011).
https://doi.org/10.1051/0004-6361/201015336
30.Ya. V. Pavlenko, J. S. Jenkins, H. R. A. Jones, et al., “Effective temperatures, rotational velocities, microturbulent velocities and abundances in the atmospheres of the Sun, HD 1835 and HD 10700,” Mon. Not. R. Astron. Soc. 422, 542–552 (2012).
https://doi.org/10.1111/j.1365-2966.2012.20629.x
31.P. Scott, M. Asplund, N. Grevesse, et al., “The elemental composition of the Sun. II. The iron group elements Sc to Ni,” Astron. Astrophys. 537, A26 (2015).
https://doi.org/10.1051/0004-6361/201424110
32.M. A. Smith, “Applications of Fourier analysis to broadening of stellar line profiles. IV. A technique for separating macroturbulence from rotation in solar-type stars,” Astrophys. J. 208, 487–499 (1976).
https://doi.org/10.1086/154631
33.M. A. Smith, “Rotational studies of lower main-sequence stars,” Publ. Astron. Soc. Pac. 91, 737–745 (1979).
https://doi.org/10.1086/130579
34.M. A. Smith and J. F. Dominy, “The dependence of macroturbulence on luminosity in early K-type stars,” Astrophys. J. 231, 477–490 (1979).
https://doi.org/10.1086/157209
35.M. A. Smith, L. Testerman, and J. C. Evans, “Applications of Fourier analysis to broadening of stellar line profiles. III. Solar microturbulence and macroturbulence from iron lines,” Astrophys. J. 207, 308–324 (1976).
https://doi.org/10.1086/154495
36.M. Steffen, E. Caffau, and H.-G. Ludwig, “Micro-and macroturbulence predictions from CO5BOLD 3D stellar atmospheres,” Mem. Soc. Astron. Ital. Suppl. 24, 37–52 (2013).
37.Y. Takeda, “Analyses of line profiles in the solar flux spectrum for determining rotation and micro/macro turbulence,” Publ. Astron. Soc. Jpn. 47, 337–354 (1995).
38.J. A. Valenti and D. A. Fischer, “Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs,” Astrophys. J. Suppl. Ser. 159, 141–166 (2005).
https://doi.org/10.1086/430500
39.J. A. Valenti and N. Piskunov, “Spectroscopy made easy: A new tool for fitting observations with synthetic spectra,” Astron. Astrophys. Suppl. Ser. 118, 595–603 (1996).
https://doi.org/10.1051/aas:1996222