The helium burning duration for population І-ІІІ stars

1Zakhozhay, VА, 1Zabuga, SI
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(4):19-34
https://doi.org/10.15407/kfnt2020.04.019
Start Page: Physics of Stars and Interstellar Medium
Language: Ukrainian
Abstract: 

The limb darkening and the center-to-limb variation of the continuum polarization is calculated for a grid of one-dimensional stellar model atmospheres and for a wavelength range between 300 nm — 950 nm. Model parameters match those of the transiting stars taken from the NASA exoplanet archive. The limb darkening of the continuum radiation for these stars is shown to decrease with their effective temperature. For the 370 nm wavelength, which corresponds to the maximum of the Johnson-Cousins UX filter, the limb darkering of the transiting stars are enclosed in a range between 0.03 and 0.3. In contrast, the continuum linear polarization depends not only on the effective temperature of the star, but also on its gravity and metallicity. Its value decreases for increasing values of these parameters. At the UX band maximum the linear polarization of stars with transiting planets amounts to about 4 %, while the minimum value is about 0.3 %. The continuum limb darkening and the linear polarization decreases rapidly with wavelength. At the R band maximum (700 nm) the linear polarization close to the limb is in fact two orders of magnitude smaller than in the UX band. The center-to-limb variation of the continuum intensity and the linear polarization of the stars with transiting planets can be approximated, respectively, by polynomials of fourth and sixth degree. The coefficients of the polynomials, as well as the IDL procedures for reading them, are available in electronic form. It is shown that there are two classes of stars with high linear polarization at the limb. The first one consists of cold dwarfs. Their typical representatives are HATS-6, Kepler-45, as well as all the stars with similar parameters. The second class of stars includes hotter giants and subgiants. Among them we have CoRoT-28, Kepler-91 and the group of stars with effective temperatures and gravities around 5000 K and 3.5, respectively.

Keywords: approximation formulas, axial rotation of stars, Helium burning, mass of stars of zero age, stars of populations I ... III
References: 

1. C. de Jager, The Brightest Stars (Reidel, Dordrecht, 1980; Mir, Moscow, 1984).
https://doi.org/10.1007/978-94-009-9030-2

2. “Evolution of Stars, in Astronomical Encyclopedic Dictionary, Ed. by I. A. Klimishin and A. O. Korsun’ (Golovn. Astrofiz. Obs. Nats. Akad. Nauk. Ukr. & L’vivskyi Nats. Univ. Im. I. Franka, Lviv, 2003), p. 142 [in Ukrainian].

3. V. A. Zakhozhay. Lifetimes of stars in the main sequence and the maximum mass of stars in the galactic disk, Kinematics Phys. Celestial Bodies 29, 195–201 (2013).
https://doi.org/10.3103/S0884591313040065

4. V. A. Zakhozhai and S. I. Zabuga. About the time of the burning of hydrogen in the interiors of stars. New approximation formulas, Visn. Astron. Shk. 13 (2), 81–84 (2017).
https://doi.org/10.18372/2411-6602.13.14

5. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

6. V. G. Surdin, The Birth of Stars (URSS, Moscow, 2001) [in Russian].

7. A. A. Suchkov, Galaxies Familiar and Mysterious (Nauka, Moscow, 1988) [in Russian].

8. F. C. Adams and Gr. Laughlin. A dying universe: The long-term fate and evolution of astrophysical objects, Rev. Mod. Phys. 69, 337–372 (1997).
https://doi.org/10.1103/RevModPhys.69.337

9. D. Argast, M. Samland, O. E. Gerhard, and F.-K. Thielemann. Metal-poor halo stars as tracers of ISM mixing processes during halo formation, Astron. Astrophys. 356, 873–887 (2000).

10. S. Basu and H. M. Antia. Helioseismology and solar abundances, Phys. Rep. 457, 217–283 (2008).
https://doi.org/10.1016/j.physrep.2007.12.002

11. A. Bressan, F. Fagotto, G. Bertelli, and C. Chiosi. Evolutionary sequences of stellar models with new radiative opacities. II. Z = 0.02, Astron. Astrophys., Suppl. Ser. 100, 647–664 (1993).

12. A. Bressan, P. Marigo, L. Girardi, A. Nanni, and S. Rubele. Red Giant evolution and specific problems (2013). arXiv 1301.7687v1 [astro-ph.SR]
https://doi.org/10.1051/epjconf/20134303001

13. C. Charbonnel, G. Meynet, A. Maeder, G. Schaller, and D. Schaerer. Grids of stellar models. III. From 0.8 to 120 M☉ at Z = 0.004, Astron. Astrophys., Suppl. Ser. 101, 415–419 (1993).

14. A. Chieffi and M. Limongi. Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 M☉ and their explosive yields, Astrophys. J. 764, 21 (2013).
https://doi.org/10.1088/0004-637X/764/1/21

15. Star Formation, Ed. by T. De Jong and A. Maeder (Reidel, Dordrecht, 1977), in Ser.: International Astronomical Union Symposia, Vol. 75.

16. C. De Loore. The evolution of massive stars, Space Sci. Rev. 26, 113–155 (1980).
https://doi.org/10.1007/BF00167369

17. S. Ekström, C. Georgy, P. Eggenberger, G. Meynet, et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M☉ at solar metallicity (Z = 0.014), Astron. Astrophys. 537, A146 (2012).
https://doi.org/10.1051/0004-6361/201117751

18. S. Ekström, G. Meynet, C. Chiappini, R. Hirschi, and A. Maeder. Effects of rotation on the evolution of primordial stars, Astron. Astrophys. 489, 685–698 (2008).
https://doi.org/10.1051/0004-6361:200809633

19. F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi. Evolutionary sequences of stellar models with new radiative opacities. III. Z = 0.0004 and Z = 0.05, Astron. Astrophys., Suppl. Ser. 104, 365–376 (1994).

20. F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi. Evolutionary sequences of stellar models with new radiative opacities. IV. Z = 0.004 and Z = 0.008, Astron. Astrophys., Suppl. Ser. 105, 29–38 (1994).

21. F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi. Evolutionary sequences of stellar models with very high metallicity. V. Z = 0.1, Astron. Astrophys., Suppl. Ser. 105, 39–45 (1994).

22. C. Georgy, S. Ekström, P. Eggenberger, G. Meynet, et al. Grids of stellar models with rotation. III. Models from 0.8 to 120 M☉ at a metallicity Z = 0.002, Astron. Astrophys. 558, A103 (2013).
https://doi.org/10.1051/0004-6361/201322178

23. I. J. Iben. Post main sequence evolution of single stars, Ann. Rev. Astron. Astrophys. 12, 215–256 (1974).
https://doi.org/10.1146/annurev.aa.12.090174.001243

24. I. Iben, Jr. and A. Renzini. Single star evolution I. Massive stars and early evolution of low and intermediate mass stars, Phys. Rep. 105, 329–406 (1984).
https://doi.org/10.1016/0370-1573(84)90142-X

25. P. Marigo, C. Chiosi, and R.-P. Kudritzki. Zero-metallicity stars. II. Evolution of very massive objects with mass loss, Astron. Astrophys. 399, 617–630 (2003).
https://doi.org/10.1051/0004-6361:20021756

26. P. Marigo, L. Girardi, C. Chiosi, and P. R. Wood. Zero-metallicity stars. I. Evolution at constant mass, Astron. Astrophys. 371, 152–173 (2001).
https://doi.org/10.1051/0004-6361:20010309

27. J. G. Mengel, A. V. Sweigart, P. Demarque, and P. G. Gross. Stellar evolution from the zero-age main sequence, Astrophys. J., Suppl. Ser. 40, 733–791 (1979).
https://doi.org/10.1086/190603

28. G. Meynet and A. Maeder. Stellar evolution with rotation. V. Changes in all the outputs of massive star models, Astron. Astrophys. 361, 101–120 (2000).

29. G. Meynet and A. Maeder. Stellar evolution with rotation. X. Wolf–Rayet star populations at solar metallicity, Astron. Astrophys. 404, 975–990 (2003).
https://doi.org/10.1051/0004-6361:20030512

30. G. Meynet and A. Maeder. Stellar evolution with rotation. XI. Wolf–Rayet star populations at different metallicities, Astron. Astrophys. 429, 581–598 (2005).
https://doi.org/10.1051/0004-6361:20047106

31. G. Meynet, A. Maeder, P. Eggenberger, S. Ekstrom, et al. Impact of rotation on stellar models, Astron. Nachr. 337, 827–836 (2016).
https://doi.org/10.1002/asna.201612380

32. G. Meynet, A. Maeder, G. Schaller, D. Schaerer, and C. Charbonnel. Grids of stellar models. V. From 0.8 to 120 M☉ at Z = 0.001, 0.004, 0.008, 0.020 and 0.040, Astron. Astrophys., Suppl. Ser. 103, 97–105 (1994).

33. W. Packet, D. Vanbeveren, J. P. De Grève, C. De Loore, and S. R. Sreenivasan. The evolution of rotational velocity in O type stars, Astron. Astrophys. 82, 73–78 (1980).

34. B. Paczynski. Evolution of stars with M ≤ 8M☉, in Late Stages of Stellar Evolution, Ed. by R. J. Tayler and J. E. Hesser (Springer-Verlag, Dordrecht, 1974), in Ser.: International Astronomical Union Symposia, Vol. 66, pp. 62–69.
https://doi.org/10.1007/978-94-010-2237-8_15

35. M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, et al. NuGrid stellar data Set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01, Astron. Astrophys., Suppl. Ser. 225, 24 (2016).
https://doi.org/10.3847/0067-0049/225/2/24

36. C. M. Raiteri, M. Villata, and J. F. Navarro. Simulation of Galactic chemical evolution. I. O and Fe abundances in a simple collapse model, Astron. Astrophys. 315, 105–115 (1996).

37. C. Ritter, F. Herwig, S. Jones, M. Pignatari, et al. NuGrid stellar data set — II. Stellar yields from H to Bi for stellar models with MZAMS = 1–25 M☉ and Z = 0.0001–0.02, Mon. Not. R. Astron. Soc. 480, 538–571 (2018).
https://doi.org/10.1093/mnras/sty1729

38. D. Schaerer, C. Charbonnel, G. Meynet, A. Maeder, and G. Schaller. Grids of stellar models. IV. From 0.8 to 120 M☉ at Z = 0.040, Astron. Astrophys., Suppl. Ser. 102, 339–342 (1993).

39. D. Schaerer, G. Meynet, A. Maeder, and G. Schaller. Grids of stellar models. II. From 0.8 to 120 M☉ at Z = 0.008, Astron. Astrophys., Suppl. Ser. 98, 523–527 (1993).

40. G. Schaller, D. Schaerer, G. Meynet, and A. Maeder. New grids of stellar models from 0.8 to 120 M☉ at Z = 0.020 and Z = 0.001, Astron. Astrophys., Suppl. Ser. 96, 269–331 (1992).

41. D. Sugimoto and K. Nomoto. Presupernova models and supernovae, Space Sci. Rev. 25, 155–227 (1980).
https://doi.org/10.1007/BF00212318

42. A. V. Sweigart and P. G. Gross. Horizontal-branch evolution with semiconvection. II. Theoretical sequences, Astrophys. J., Suppl. Ser. 32, 367–398 (1976).
https://doi.org/10.1086/190401