The statistical analysis of infrasonic parameters generated by the Chelyabinsk meteoroid

1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(4):35-57
https://doi.org/10.15407/kfnt2020.04.035
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

The passage of the Chelyabinsk meteoroid generated a wide variety of physical effects in all subsystems in the Earth — atmosphere — ionosphere — magnetosphere system. Earlier studies have been conducted in order to examine Chelyabinsk meteoroid effects in the atmosphere, ionosphere, and the geomagnetic field. Particular attention has been given to the features of the infrasound signal generated by the Chelyabinsk meteoroid. At the same time, the results of the statistical analysis of infrasonic parameters are absent in the literature. The purpose of this paper is to construct correlation diagrams for basic infrasonic parameters of the signal propagating globally (such as signal-to-noise ratios, time lags, celerity, time durations, amplitudes, and periods per cycle) on either the distance between the infrasound source and the sensor or the source back-azimuth, as well as to fit respective regression lines. The data have been retrieved from 15 infrasound stations of the International Monitoring System (IMS) set up by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). On individual occasions, these data have been complemented by the data acquired by the infrasound stations located at the Eurasia geophysical observatories. The correlation diagrams have been constructed for basic parameters of the infrasonic signal propagating globally. The estimated regression lines superimposed on the scatter diagrams of these parameters versus distance or back-azimuth are shown. Averaged over all propagation paths, estimates of the celerity (approximately 280 m/s) and tropospheric-stratospheric wind (about 30 m/s) have been determined. The advantages and disadvantages of the regression lines proposed are discussed.

Keywords: azimuth, celerity, correlation diagram, infrasonic signal, regression line, signal amplitude, signal duration, signal period per cycle, signal-to-noise ratio, time lag
References: 

1. V. V. Alpatov, V. A. Burov, Yu. P. Vagin, et al., Geophysical Conditions at the Explosion of the Chelyabinsk (Chebarkulsky) Meteoroid in February 15,2013 (Inst. Prikl. Geofiz., Moscow, 2013) [in Russian].

2. Asteroids and Comets. Chelyabinsk Event and the Study of Meteorite Falling into the Lake Chebarkul (Proc. Int. Sci.-Pract. Conf., Chebarkul, Russia, June 21–22, 2013) (Krai Ra, Chelyabinsk, 2013).

3. Astron. Vestn. 47 (4) (2013).

4. O. I. Berngardt, A. A. Dobrynina, G. A. Zherebtsov, A. V. Mikhalev, N. P. Perevalova, K. G. Ratovskii, R. A. Rakhmatulin, V. A. San’kov, and A. G. Sorokin. Geophysical phenomena accompanying the Chelyabinsk meteoroid impact, Dokl. Earth Sci. 452, 945–947 (2013).
https://doi.org/10.1134/S1028334X13090080

5. G. V. Givishvili, L. N. Leshchenko, V. V. Alpatov, S. A. Grigor’eva, S. V. Zhuravlev, V. D. Kuznetsov, O. A. Kusonskii, V. B. Lapshin, and M. V. Rybakov. Ionospheric effects induced by the Chelyabinsk meteor, Sol. Syst. Res. 47, 280–287 (2013).
https://doi.org/10.1134/S0038094613040138

6. N. N. Gor’kavyi, D. S. Likharev, and D. N. Minnibaev. The aerosol trace colour variations of the Chelyabinsk meteoroid, in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 118–123.

7. N. N. Gor’kavyi and T. A. Taidakova. The interaction of the Chelyabinsk meteoroid with atmosphere, in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 124–129.

8. N. N. Gor’kavyi, T. A. Taidakova, E. A. Provornikova, I. N. Gor’kavyi, and M. M. Akhmetvaleev. The aerosol plume of the Chelyabinsk meteoroid, in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 130–135.

9. M. B. Gokhberg, E. V. Ol’shanskaya, G. M. Steblov, and S. L. Shalimov. The Chelyabinsk meteorite: Ionospheric response based on GPS measurements, Dokl. Earth Sci. 452, 948–952 (2013).
https://doi.org/10.1134/S1028334X13090109

10. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, M. A. Shelyakov, Yu. V. Pakhomov, B. M. Shustov, V. V. Shuvalov, E. E. Biryukov, Yu. S. Rybnov, M. Ya. Marov, L. V. Rykhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Kharlamov, and I. A. Trubetskaya. Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013), Sol. Syst. Res. 47, 240–254 (2013).
https://doi.org/10.1134/S0038094613040114

11. O. V. Lazorenko and L. F. Chernogor. System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid, Radioelectron. Commun. Syst. 60, 331–338 (2017).
https://doi.org/10.3103/S0735272717080015

12. The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15, 2014), Ed. by N. A. Antipin, (Kamennyi Poyas, Chelyabinsk, 2014).

13. N. P. Perevalova, N. V. Shestakov, A. S. Zhupityaeva, Yu. V. Yasyukevich, S. V. Voeikov, and K. A. Kutelev. TEC variations in the ionosphere during the fall and explosion of the Chelyabinsk meteoroid, in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 182–190.

14. O. P. Popova, V. V. Shuvalov, Yu. S. Rybnov, V. A. Kharlamov, D. O. Glazachev, V. V. Emel’yanenko, A. P. Kartashova, and P. Dzhenniskens. Chelyabinsk meteoroid parameters: Data analysis, in Dynamic Processes in Geospheres: Compilation of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 1–10 [in Russian].

15. Yu. S. Rybnov, O. P. Popova, V. A. Kharlamov, et al. Energy estimation of Chelyabinsk bolide using infrasound measurements, in Dynamic Processes in Geospheres: Compilation of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 21–31 [in Russian].

16. A. G. Sorokin. Infrasonic radiation of Chelyabinsk meteoroid, Soln.-Zemnaya Fiz., No. 24, 58–63 (2013).

17. L. F. Chernogor. Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite event, Radiofiz. Elektron. 4(18) (3), 47–54 (2013).

18. L. F. Chernogor. The main physical effects associated with the Chelyabinsk bolide passage, in Asteroids and Comets. Chelyabinsk Event and the Study of Meteorite Falling into the Lake Chebarkul (Proc. Int. Sci.-Pract. Conf., Chebarkul, Russia, June 21–22,2013) (Krai Ra, Chelyabinsk, 2013), pp. 148–152.

19. L. F. Chernogor. Plasma, electromagnetic and acoustic effects of meteorite "Chelyabinsk, Inzh. Fiz., No. 8, 23–40 (2013).

20. L. F. Chernogor. Physical effects of the Chelyabinsk meteorite passage, Dopov. Nats. Akad. Nauk Ukr., No. 10, 97–104 (2013).

21. L. F. Chernogor. Geomagnetic field effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.) 54, 613–624 (2014).
https://doi.org/10.1134/S001679321405003X

22. L. F. Chernogor. Main effects of Chelyabinsk meteorite falling: Physics and mathematics calculation results, in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 229–264.

23. L. F. Chernogor. Ionospheric effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.) 55, 353–368 (2015).
https://doi.org/10.1134/S0016793215030044

24. L. F. Chernogor. Acoustic effects of the Chelyabinsk meteoroid, Radiofiz. Radioastron. 22 (1), 53–66 (2017).
https://doi.org/10.15407/rpra22.01.053

25. L. F. Chernogor. Atmospheric effects of the gas–dust plume of the Chelyabinsk meteoroid of 2013, Izv., Atm-os. Oceanic Phys. 53, 259–268 (2017).
https://doi.org/10.1134/S0001433817030033

26. L. F. Chernogor. Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body, Cosmic Res. 55, 323–332 (2017).
https://doi.org/10.1134/S0010952517050033

27. L. F. Chernogor and V. V. Barabash. Ionosphere disturbances accompanying the flight of the Chelyabinsk body, Kinematics Phys. Celestial Bodies 30, 126–136 (2014).
https://doi.org/10.3103/S0884591314030039

28. L. F. Chernogor and K. P. Garmash. Disturbances in geospace associated with the Chelyabinsk meteorite passage, Radiofiz. Radioastron. 18, 231–243 (2013).

29. L. F. Chernogor and A. I. Lyashchuk. Parameters of infrasonic waves generated by the Chelyabinsk meteoroid on February 15, 2013, Kinematics Phys. Celestial Bodies 33, 79–87 (2017).
https://doi.org/10.3103/S0884591317020027

30. L. F. Chernogor, Yu. B. Milovanov, V. N. Fedorenko, and A. M. Tsymbal. Satellite observations of ionospheric disturbances which followed the Chelyabinsk meteorite passage, Kosm. Nauka Tekhnol. 19 (6), 38–46 (2013).
https://doi.org/10.15407/knit2013.06.038

31. L. F. Chernogor and N. B. Shevelev. The parameters of infrasound effects generated by Chelyabinsk meteoroid 15 February, 2013, Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser.: Radiofiz. Elektron., No. 25, 70–73 (2016).

32. L. F. Chernogor and N. B. Shevelev. Characteristics of the infrasound signal generated by Chelyabinsk celestial body: Global statistics, Radiofiz. Radioastron. 23, 24–35 (2018).
https://doi.org/10.15407/rpra23.01.024

33. M. Antolik, G. Ichinose, J. Creasey, and D. Clauter. Seismic and infrasonic analysis of the major bolide event of 15 February 2013, Seismol. Res. Lett. 85, 334–343 (2014).
https://doi.org/10.1785/0220130061

34. M. I. Avramenko, I. V. Glazyrin, G. V. Ionov, and A. V. Karpeev. Simulation of the airwave caused by the Chelyabinsk superbolide, J. Geophys. Res.: Atmos. 119, 7035–7050 (2014).
https://doi.org/10.1002/2013JD021028

35. L. F. Chernogor and V. T. Rozumenko. The physical effects associated with Chelyabinsk meteorite’s passage, Vopr. At. Nauki Tekh., No. 4 (86), 136–139 (2013).

36. W. N. Edwards, P. G. Brown, and D. O. ReVelle. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves, J. Atmos. Sol.-Terr. Phys. 68, 1136–1160 (2006).
https://doi.org/10.1016/j.jastp.2006.02.010

37. N. Gi, Using Bolide Airwaves to Estimate Meteoroid Source Characteristics and Window Damage Potential, Master of Science Thesis (Univ. of Western Ontario, London, Ontario, Canada, 2017).

38. S. S. Grigoryan, F. S. Ibodov, and S. I. Ibadov. Physical mechanism of Chelyabinsk superbolide explosion, Sol. Syst. Res. 47, 268–274 (2013).
https://doi.org/10.1134/S0038094613040151

39. A. Le Pichon, L. Ceranna, C. Pilger, et al. Russian fireball largest ever detected by CTBTO infrasound sensors, Geophys. Res. Lett. 40, 3732–3737 (2013).
https://doi.org/10.1002/grl.50619

40. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G. Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi. Chelyabinsk airburst, damage assessment, meteorite, and characterization, Science 342, 1069–1073 (2013).
https://doi.org/10.1126/science.1242642

41. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi. Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization (2013). https://www.sciencemag.org/cgi/content/full/science.1242642/DC1.
https://doi.org/10.1126/science.1242642

42. D. O. ReVelle. Historical detection of atmospheric impacts by large bolides using acoustic gravity waves, Ann. N. Y. Acad. Sci. 822, 284–302 (1997).
https://doi.org/10.1111/j.1749-6632.1997.tb48347.x