Molecular hydrogen H² (4-0) in the spectra of Jupiter and Saturn

Atai, AA, Yuzbashov, ER, 1Mikailov, KM, Farziev, ZS
1Nasir al-Din al-Tusi Shamakhi Astrophysical Observatory, Pirqulu, Azerbaijan
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(5):18-36
https://doi.org/10.15407/kfnt2021.05.018
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

According to the spectrophotometric measurements of Jupiter and Saturn, obtained in 2014—2017, on the echelle spectrometer equipped with a CCD receiver at the Cassegrain focus of the 2-m telescope of the ShAO, weak quadrupole lines of molecular hydrogen of the H2(4-0) band in the visible region of the spectrum with spectral resolutions R = 14000 and R = 56000. Some parameters were determined from the lines of the H2 (4-0) S(0) and S(1) band, i.e. the values of the pressure at the levels of their formation, the rotational temperature, the values of the content of molecular hydrogen in the above-cloud atmosphere, the amount of absorbing gas per average length free path of photons between two scattering events in the cloud layer, specific gas content per unit free path in different parts of the disk of Jupiter and Saturn. It was necessary to monitor the change in the ratio S4(2)/S4(0) along the disk of Jupiter and Saturn in the spatial and temporal intervals. According to our measurements in 2016 for Jupiter, the ratio W(0)/W(2) = 3.5±0.6, and for Saturn W(0)/W(2) > 2.5±0.4; in general, the GRS has an average temperature of about 124 ± 6 K.

Keywords: atmosphere, echelle spectrograph, Jupiter, molecular hydrogen, quadrupole line, Saturn, spectral lines
References: 

1. G. A. Galazutdinov. DESN-20 stellar echelle spectra processing system, Preprint No. 92, SAO RAN (Spec. Astrophys. Obs., Nizhny Arkhyz, 1992).

2. L. V. Ksanfomaliti, Solar System, Ed. by V. G. Surdin (Fizmatlit, Moscow, 2012) [in Russian].

3. M. Ya. Marov, Space: From the Solar System and Into the Universe, 2nd ed. (Fizmatlit, Moscow, 2018) [in Russian].

4. Kh. M. Mikailov, V. M. Khalilov, and I. A. Alekperov. Echelle spectrometer of the Cassegrain focus of the 2-m telescope of the Shamakhy Astrophysical Observatory of the National Academy of Sciences of Azerbaijan, Tsirk. ShAO, No. 109, 21–29 (2005).

5. V. I. Moroz, Physics of Planets (Nauka, Moscow, 1967; NASA, Washington, DC, 1968).

6. V. G. Teifel’, Optical Properties of the Atmospheres of Jupiter and Saturn, Doctoral Dissertation (Alma-Ata, 1980).

7. S. C. Beck, J. H. Lacy, and T. R. Geballe. Detection of 12.28 micron rotational line of molecular hydrogen in the Orion molecular cloud, Astrophys. J., Lett. 234, L213–L216 (1979).
https://doi.org/10.1086/183142

8. J. T. Bergstralh, J. S. Margolis, and J. W. Brault. Intensity and pressure shift of the H2(4-0) S(1) quadrupole line, Astrophys. J., Lett. 224, L39–L41 (1978).
https://doi.org/10.1086/182754

9. R. M. Bliesner, Parahydrogen-Orthohydrogen Conversion for Boil-Off Reduction from Space Stage Fuel Systems, Master of Science Thesis (Washington State Univ. School of Mechanical and Materials Engineering, Pullman, Wash., 2013).

10. S. L. Bragg, J. B. Brault, and W. H. Smith. Line positions and strengths in the H2 quadrupole spectrum, Astrophys. J. 263, 999–1004 (1982).
https://doi.org/10.1086/160568

11. J. B. Brault and W. H. Smith. Determination of the H2 4-0 S(1) quadrupole line strength and pressure shift, Astrophys. J. 235, L177–L178 (1980).
https://doi.org/10.1086/183185

12. W. D. Cochran and W. H. Smith. Desaturation of H2 quadrupole lines in the atmospheres of the outer planets, Astrophys. J. 271, 859–864 (1983).
https://doi.org/10.1086/161251

13. B. J. Conrath and P. J. Gierasch. Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets, Icarus 57, 184–204 (1984).
https://doi.org/10.1016/0019-1035(84)90065-4

14. B. J. Conrath, P. J. Gierasch, T. Herter, and J. Wang. Temperature and para hydrogen gradients on Jupiter observed from the FORCAST camera on SOFIA, Icarus 215, 1–6 (2018).
https://doi.org/10.1016/j.icarus.2018.05.016

15. C. C. Cunningham, D. M. Hanten, and M. G. Tomasko. H2 spectroscopy and diurnally changing cloud on Jupiter, Icarus 75, 324–350 (1988).
https://doi.org/10.1016/0019-1035(88)90008-5

16. A. Dalgarno, A. C. Allison, and J. C. Browne. Rotation-vibration quadrupole matrix elements and quadrupole absorption coefficients of the ground electronic states of H2, HD and D2, J. Atmos. Sci. 26, 946–951 (1969).
https://doi.org/10.1175/1520-0469(1969)0262.0.CO;2

17. I. de Pater and J. J. Lissauer, Planetary Sciences (Cambridge Univ. Press, Cambridge, 2010).Book
https://doi.org/10.1017/CBO9780511780561

18. T. Encrenaz and T. Owen. New observations of the hydrogen quadrupole lines on Saturn and Uranus, Astron. Astrophys. 28, 119–124 (1973).

19. U. Fink, T. A. Wiggins, and D. H. Rank. Frequency and intensity measurements on the quadrupole spectrum of molecular hydrogen, J. Mol. Spectrosc. 18, 384–395 (1965).
https://doi.org/10.1016/0022-2852(65)90044-5

20. F. M. Flasar. Global dynamics and thermal structure of Jupiter’s atmosphere, Icarus 65, 280–303 (1986).
https://doi.org/10.1016/0019-1035(86)90140-5

21. L. N. Fletcher, G. S. Orton, O. Mousis, et al. Thermal structure and composition of Jupiter’s Great Red Spot from high-resolution thermal imaging, Icarus 208, 306–328 (2010).
https://doi.org/10.1016/j.icarus.2010.01.005

22. T. N. Gautier, U. Fink, R. R. Treffers, and H. P. Larson. Detection of molecular hydrogen quadrupole emission in the Orion nebula, Astrophys. J., Lett. 207, L129–L132 (1976).
https://doi.org/10.1086/182195

23. L. P. Giver and H. Spinrad. Molecular hydrogen features in the spectra of Saturn and Uranus, Icarus 5, 586–589 (1966).
https://doi.org/10.1016/0019-1035(66)90073-X

24. G. Herzberg. On the possibility of detecting molecular hydrogen and nitrogen in planetary and stellar atmospheres by their rotation-vibration spectra, Astrophys. J. 87, 428–437 (1938).
https://doi.org/10.1086/143935

25. G. Herzberg. Spectroscopic evidence of molecular hydrogen in the atmospheres of Uranus and Neptune, Astrophys. J. 115, 337–340 (1952).
https://doi.org/10.1086/145552

26. E. Karkoschka. Diurnal variations on Jupiter and Saturn?, Icarus 97, 182–186 (1992).
https://doi.org/10.1016/0019-1035(92)90126-R

27. C. Keffer, C. P. Conner, and W. H. Smith. Gas phase cryogenic photoacoustic detector, Rev. Sci. Instrum. 56, 2161–2163 (1985).
https://doi.org/10.1063/1.1138389

28. C. C. Kiess, C. H. Corliss, and H. K. Kiess. High-dispersion spectra of Jupiter, Astrophys. J. 132, 221–231 (1960).
https://doi.org/10.1086/146916

29. R. F. Knacke and E. T. Young. Detection of the S(9), v = 0→0 rotation line of the hydrogen molecule in ORION, Astrophys. J. 242, L183–L186 (1980).
https://doi.org/10.1086/183428

30. G. P. Kuiper. New absorptions in the Uranus atmosphere, Astrophys. J. 109, 540–541 (1949).
https://doi.org/10.1086/145161

31. B. L. Lutz. Molecular hydrogen on Uranus: Observation of the 3-0 quadrupole band, Astrophys. J. 182, 989–998 (1973).
https://doi.org/10.1086/152199

32. A. R. W. McKellar. The significant of pressure shifts for the interpretation of H2 quadrupole lines in planetary spectra, Icarus 22, 212–219 (1974).
https://doi.org/10.1016/0019-1035(74)90120-1

33. Kh. M. Mikayilov, F. A. Musayev, I. A. Alakbarov, B. N. Rustamov, and O. V. Khalilov. ShaFES: Shamakhy Fibre Echelle Spectrograph, Azerb. Astron. J. 12 (1), 4–27 (2017).

34. Ch. E. Moore, M. G. J. Minnaert, and J. Houtgast, The Solar Spectrum 2935 Å to 8770 Å: Second Revision of Rowland’s Preliminary Table of Solar Spectrum Wavelengths (National Bureau of Standards, Washington, DC, 1966), in Ser.: National Bureau of Standards Monograph, Vol. 61.
https://doi.org/10.6028/NBS.MONO.61

35. P. V. Sada, R. F. Beebe, and B. J. Conrath. Comparison of the structure and dynamics of Jupiter’s Great Red Spot between the Voyager 1 and 2 encounter, Icarus 119, 311–335 (1996).
https://doi.org/10.1006/icar.1996.0022

36. A. A. Simon-Miller, D. Banfield, and P. J. Gierasch. Color and the vertical structure in Jupiter’s belts, zones, and weather systems, Icarus 154, 459–474 (2001).
https://doi.org/10.1006/icar.2001.6742

37. A. Simon-Miller, P. Gierasch, R. Beede, et al. New observational results concerning Jupiter’s Great Red Spot, Icarus 158, 249–266 (2002).
https://doi.org/10.1006/icar.2002.6867

38. W. H. Smith, C. P. Conner, J. Simon, W. V. Schempp, and W. Macy. The H2 4-0 S(0, 1 and 2) quadrupole features in Jupiter, Icarus 81, 429–440 (1989).
https://doi.org/10.1016/0019-1035(89)90062-6

39. H. Spinrad and L. M. Trafton. High-dispersion spectra of outer planets: I. Jupiter in the visual and red, Icarus 2, 19–28 (1963).
https://doi.org/10.1016/0019-1035(63)90004-6

40. L. M. Trafton. Neptune: Observations of the H2 quadrupole lines in the (4-0) band, IAU Symp. 65, 497–511 (1974).
https://doi.org/10.1017/S0074180900025742

41. L. M. Trafton. Neptune: Observations of the H2 quadrupole lines in the (4-0) band, Presented at the AAS-DPS Meeting, Tucson, Ariz., March 1973.
https://doi.org/10.1007/978-94-010-2206-4_45

42. J. T. Trauger, M. E. Mickelson, and L. E. Larson. Laboratory absorption strengths for the H2 (4,0) and (3,0) S(1) lines, Astrophys. J., Lett. 225, L157–L160 (1978).
https://doi.org/10.1086/182816

43. R. A. West, D. F. Strobel, and M. G. Tomasko. Clouds, aerosols and photochemistry in the Jovian atmosphere, Icarus 65, 161–217 (1986).
https://doi.org/10.1016/0019-1035(86)90135-1