Quantitative analysis of the spectrum of HD 108564

Pavlenko, YV
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(6):43-58
https://doi.org/10.15407/kfnt2022.06.043
Language: eng
Abstract: 

Quantitative analysis of the spectrum HD 108564 is carried out. This is the star of the main sequence of the spectral class K5V, the atmosphere of which is depleted of metals. The high quality observed HARPS spectra were downloaded from the ESO archive. Abundances of elements in the atmosphere were obtained by fit of observational profiles of lines C I and selected lines of molecules C2, O I, Ca I, Si I, Sc II, Cr I, CI, OI, Na I, Mg I, Si I, Ca I, Sc II, Ti I and Ti II, CR I, Mn I, Fe I and Fe II, Co I, Ni I, Cu I, Zn I. Abundances were determined iteratively, with a recalculation of the input parameters, which are the effective temperature Teff at a fixed value of the gravity (or for a fixed Teff). We determined the impact of vatiations of Teff or , which provide the same abundances of A(Fe I) and A(Fe II) on the abundances of other elements. The results obtained indicate an excess of light elements (C, O, Si) to the group of iron. We get the upper limit of the lithium abundance A(Li)

Keywords: abundances, star HD 108564, stellar spectra

Повний текст (PDF)

References: 

l. Adibekyan V. Z., Sousa S. G., Santos N. C., et al. (2012). Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. Galactic stellar populations and planets. Astron. and Astrophys. 545. A32.
https://doi.org/10.1051/0004-6361/201219401

2. Aguilera-Gomez C., Ramirez I., Chaname J. (2018). Lithium abundance patterns of late- F stars: an in-depth analysis of the Lithium desert. Astron. and Astrophys. 614. A55.
https://doi.org/10.1051/0004-6361/201732209

3. Anders E., Grevesse N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta. 53 (1). 197-214.
https://doi.org/10.1016/0016-7037(89)90286-X

4. Arenou F., Luri X., Babusiaux C., et al. (2018). Gaia Data Release 2. Catalogue valida¬tion. Astron. and Astrophys. 616. A17.
https://doi.org/10.1051/0004-6361/201833234

5. Arentsen A., Prugniel P., Gonneau A., et al. (2019). Stellar atmospheric parameters for 754 spectra from the X-shooter spectral library. Astron. and Astrophys. 627. A138.
https://doi.org/10.1051/0004-6361/201834273

6. Bond J. C., O'Brien D. P., Lauretta D. S. (2010). The compositional diversity of extra¬solar terrestrial planets. I. In situ simulations. Astrophys. J. 715 (2). 1050-1070.
https://doi.org/10.1088/0004-637X/715/2/1050

7. Carigi L., Peimbert M., Esteban G., Garca-Rojas J. (2005). Carbon, Nitrogen, and Oxygen galactic gradients: A solution to the Carbon enrichment problem. Astrophys. J. 623 (1). 213-224.
https://doi.org/10.1086/428491

8. Christensen-Dalsgaard J., Gough D. O., Thompson M. J. (1991). The depth of the solar convection zone. Astrophys. J. 378. 413.
https://doi.org/10.1086/170441

9. Costa Silva A. R., Delgado Mena E., Tsantaki M. (2020). Chemical abundances of 1111 FGK stars from the HARPS-GTO planet search sample. III. Sulfur. Astron. and Astrophys. 634. A136.
https://doi.org/10.1051/0004-6361/201936523

10. Cretignier M., Francfort J., Dumusque X., Allart R., Pepe F. (2020). RASSINE: Interactive tool for normalising stellar spectra. I. Description and performance of the code. Astron. and Astrophys. 640. A42.
https://doi.org/10.1051/0004-6361/202037722

11. Delgado Mena E., Adibekyan V., Santos N. C., et al. (2021). Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program IV. Carbon and C/O ratios for Galactic stellar populations and planet hosts. arXiv e-prints. arXiv: 2109.04844.
https://doi.org/10.1051/0004-6361/202141588

12. Delgado Mena E., Moya A., Adibekyan V., et al. (2019). Abundance to age ratios in the HARPS-GTO sample with Gaia DR2. Chemical clocks for a range of [Fe/H]. Astron. and Astrophys. 624. A78.
https://doi.org/10.1051/0004-6361/201834783

13. Deliyannis C. P., Pinsonneault M. H. (1997). 110 Herculis: A possible prototype for simultaneous Lithium and Beryllium depletion, and implications for stellar interiors. Astrophys. J. 488 (2). 836-840.
https://doi.org/10.1086/304747

14. Dorn C., Khan A., Heng K., et al. (2015). Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. and Astrophys. 577. A83.
https://doi.org/10.1051/0004-6361/201424915

15. dos Santos L. A., Melndez J., do Nascimento J. D., et al. (2016). The solar twin planet search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars. Astron. and Astrophys. 592. A156.
https://doi.org/10.1051/0004-6361/201628558

16. Farihi J., Arendt A. R. Machado H. S., Whitehouse L. J. (2018). Evidence for halo kinematics among cool carbon-rich dwarfs. Mon. Notic. Roy. Astron. Soc. 477 (3). 3801-3806.
https://doi.org/10.1093/mnras/sty890

17. Gaia Collaboration. (2018). VizieR online data catalog: Gaia DR2 (Gaia Collaboration, 2018). VizieR Online Data Catalog. 1/345.

18. Gonneau A., Lyubenova M., Langon A., et al. (2020). The X-shooter Spectral Library (XSL): Data release 2. Astron. and Astrophys. 634. A133.
https://doi.org/10.1051/0004-6361/201936825

19. Gray D. F. (1976). The observation and analysis of stellar photospheres.

20. Gurtovenko E. A., Kostyk R. I. (1989). Fraunhofer spectrum and a system of solar oscillator strengths. Kyiv: Naukova Dumka.

21. Ivanyuk O., Pavlenko Y. V., Jenkins J. S., Jones H. R. A. (2018). Accuracies of abun¬dance determinations in large spectroscopic surveys. ESO Conf. The Galactic Bulge at the Crossroads. 10-14 December 2018, Pucon, Chile. 18.

22. Ivanyuk О. M., Jenkins J. S., Pavlenko Y. V., Jones H. R. A., Pinfield D. J. (2017). The metal-rich abundance pattern - spectroscopic properties and abundances for 107 main-sequence stars. Mon. Notic. Roy. Astron. Soc. 468 (4). P. 4151-4169.
https://doi.org/10.1093/mnras/stx647

23. Kobayashi C., Karakas A. I., Lugaro M. (2020). The origin of elements from Carbon to Uranium. Astrophys. J. 900(2). 179.
https://doi.org/10.3847/1538-4357/abae65

24. Koleva M., Prugniel P., Bouchard A., Wu Y. (2009). ULySS: a full spectrum fitting package. Astron. and Astrophys. 501(3). 1269-1279.
https://doi.org/10.1051/0004-6361/200811467

25. Kurucz R. L., Furenlid L, Brault J., Testerman L. (1984). Solar flux atlas from 296 to 1300 nm.

26. Luck R. E. (2018). Abundances in the local region. III. Southern F, G, and K dwarfs. Astron. J. 155(3). 111.
https://doi.org/10.3847/1538-3881/aaa9b5

27. Mashonkina L., Gehren T., Shi J. R., Korn A. J., Grupp F. (2011). A non-LTE study of neutral and singly-ionized iron line spectra in ID models of the Sun and selected late-type stars. Astron. and Astrophys. 528. A87.
https://doi.org/10.1051/0004-6361/201015336

28. Michaud G. (1986). The Lithium abundance gap in the Hyades F stars: The signature of diffusion. Astrophys. J. 302. 650.
https://doi.org/10.1086/164025

29. Montalbn J., Schatzman E. (2000). Mixing by internal waves. III. Li and Be abundance dependence on spectral type, age and rotation. Astron. and Astrophys. 354. 943-959.

30. Pavlenko Y. V. (2003). Model atmospheres of red giants. Astron. Reps. 47(1). 59-67.
https://doi.org/10.1134/1.1538496

31. Pavlenko Y. V. (2017). Determination of abundances in the atmospheres of F-, G-, and K-dwarfs. Kinematics and Phys. Celestial Bodies. 33(2). 55-62.
https://doi.org/10.3103/S0884591317020064

32. Pavlenko Y. V., Jenkins J. S., Ivanyuk О. M., et al. (2018). A detailed study of lithium in 107 CHEPS dwarf stars. Astron. and Astrophys. 611. A27.
https://doi.org/10.1051/0004-6361/201731547

33. Pavlenko Y. V., Kaminsky В. M., Jenkins J. S., et al. (2019). Masses, oxygen, and carbon abundances in CHEPS dwarf stars. Astron. and Astrophys. 621. A112.
https://doi.org/10.1051/0004-6361/201834138

34. Pinsonneault M. H., Deliyannis C. P., Demarque P. (1992). Evolutionary models of halo stars with rotati¬on. II. Effects of metallicity on Lithium depletion, and possible implications for the primordial Lithium abundance. Astrophys. J. Suppl. Ser. 78. 179.
https://doi.org/10.1086/191624

35. Ramrez I., Melndez J. (2005). The effective temperature scale of FGK stars. I. Determination of temperatures and angular diameters with the infrared flux method. Astrophys. J. 626(1). 446-464.
https://doi.org/10.1086/430101

36. Ramrez L, Melndez J., Bean J., et al. (2014). The solar twin planet search. I. Fundamental parameters of the stellar sample. Astron. and Astrophys. 572. A48.
https://doi.org/10.1051/0004-6361/201424244

37. Ryabchikova T., Piskunov N., Kurucz R. L., et al. (2015). A major upgrade of the VALD database. Phys. Scr. 90(5). 054005.
https://doi.org/10.1088/0031-8949/90/5/054005

38. Snchez-Blzquez P., Peletier R. F., Jimnez-Vicente J., et al. (2006). Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Notic. Roy. Astron. Soc. 371(2). 703-718.
https://doi.org/10.1111/j.1365-2966.2006.10699.x

39. Serenelli A. M., Basu S., Ferguson J. W., Asplund M. (2009). New solar composition: The problem with solar models revisited. Astrophys. J. Lett. 705(2). L123-L127.
https://doi.org/10.1088/0004-637X/705/2/L123

40. Sitnova T., Zhao G., Mashonkina L., et al. (2015). Systematic Non-LTE study of the -2.6 https://doi.org/10.1088/0004-637X/808/2/148

41. Soubiran C., Jasniewicz G., Chemin L., et al. (2018). Gaia Data Release 2. The catalogue of radial velocity standard stars. Astron. and Astrophys. 616. A7.
https://doi.org/10.1051/0004-6361/201832795

42. Sousa S. G., Santos N. C., Israelian G., et al. (2011). Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program. Precise spectroscopic parameters and mass estimation. Astron. and Astrophys. 526. A99.
https://doi.org/10.1051/0004-6361/201015646

43. Strassmeier K., Washuettl A., Granzer T., Scheck M., Weber M. (2000). The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars. Astron. and Astrophys. Suppl. Ser. 142. 275-311.
https://doi.org/10.1051/aas:2000328

44. Strassmeier K. G., Weber M., Granzer T., Jrvinen S. (2012). Rotation, activity, and lithium abundance in cool binary stars. Astron. Nachr. 333(8). 663.
https://doi.org/10.1002/asna.201211719

45. Swenson F. J., Faulkner J. (1992). Lithium dilution through main-sequence mass loss. Astrophys. J. 395. P. 654.
https://doi.org/10.1086/171686

46. Wenger M., Ochsenbein F., Egret D., et al. (2000). The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. and Astrophys. Suppl. Ser. 143. 9-22.
https://doi.org/10.1051/aas:2000332