Ionospheric effects of the Kamchatka meteoroid: GPS observations

Heading: 
Luo, Y, 1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(2):3-15
https://doi.org/10.15407/kfnt2023.02.003
Start Page: Space Physics
Language: Ukrainian
Abstract: 

The most important event in astronomy and in the physics of celestial bodies at the beginning of the twenty-first century was the Chelyabinsk meteoroid entry into the terrestrial atmosphere with kinetic energy equal to about 440 kt of TNT. Such an event occurs at a rate of about one per 65 years. The effects from this celestial body were dealt with in more than 200 scientific papers. The entry into the atmosphere of another large meteoroid on December 18, 2018, which has been termed the Kamchatka meteoroid by the author, was reported in less than 25 scientific papers. Meanwhile, the parameters of this meteoroid are quite unique. Its velocity components are estimated to be υx ≈ 6.3, υy ≈ –3, υz ≈ –31.2 km/s yielding the velocity magnitude of 32 km/s, the total optical radiated energy 1.3*1014 J ~ 31 kt TNT, the fireball explosion altitude 26 km over the 56.9° N, 172.4° E geographic location, the trajectory directed at an angle of about 68.6° with respect to the horizon. The initial kinetic energy is estimated to be 173 kt TNT, mass 1.41 kt, and size 9.4 m. The occurrence rate of such a body atmospheric entry is estimated to be one per 30 years. Further studies of the ionospheric effects and the intercomparisons of the results obtained with ground-based and satellite techniques are of interest. The purpose of the present work is to analyze GPS observations of the ionospheric effects and to intercompare them with the results obtained by the ground-based technique for observations of the ionosphere at oblique incidence. One AC60 receiving station at the 53° N, 173° E geographic location at a 450-km distance from the Kamchatka meteoroid explosion and six GPS satellites, PRN02, PRN05, PRN07, PRN09, PRN29 and PRN30, have been used for observing the disturbances that followed the Kamchatka meteoroid entry. The main results are summarized as follows. The time delays of the ionospheric response to the Kamchatka meteoroid explosion have been determined using GPS technology, the horizontal velocities of disturbances have been estimated to be 504...520 m/s, their periods to be 11...18 min, durations 22...35 min, wavelengths 333...530 km, and the amplitudes of disturbances in the electron density 3...4 %. The estimates of wave disturbance relative amplitudes obtained by the ground-based technique substantially in agreement (3...5 % uncertainty) with those obtained by the satellite technique. Their periods are also in fair agreement (about 10...15 min). The wave disturbances associated with both atmospheric gravity waves and seismic waves have been detected using the ground-based and satellite techniques.

Keywords: atmospheric gravity wave, GPS technology, ionosphere, Kamchatka meteoroid, seismic wave, traveling ionospheric disturbance
References: 

1. Gordeev E. I., Kulichkov S. N., Firstov P. P., Popov O. E., Chunchuzov I. P., Budilov D. I., Chebrov D. V. (2019). Infrasonic waves and assessment of the explosion energy of the Bering Sea meteoroid on December 19, 2018. Dokl. Earth Sciences. 489, 2, 1436-1439.
https://doi.org/10.1134/S1028334X19120043

2. Gossard E. E., Hooke Y. X. (1975). Waves in the atmosphere: Atmospheric infrasound and gravity waves, their generation and propagation (Developments in Atmospheric Science). Elsevier Scientific Pub. Co., 472.

3. Skripko K. A. (2019). Bering Sea Meteor Huge Explosion. Earth's Life. 41 (2).

4. Chernogor L. F. (2012). Physics and ecology of the catastrophes. (Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ.) [in Russian].

5. Chernogor L. F. (2013). Large-scale disturbances in the Earth's magnetic field associated with the Chelyabinsk meteorite. Radiofizika i elektronika. 4 (18) (3), 47-54 [in Russian].

6. Chernogor L. F. (2013). The main physical effects associated with the Chelyabinsk bolide passage. In: Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul: Proceedings of the international scientific-practical conference. Chelyabinsk, Russia: Krai Ra Publ., June 21 - 22, 2013, 148-152 [in Russian].

7. Chernogor L. F. (2013). Plasma, electromagnetic and acoustic effects of meteorite Chelyabinsk. Inzhenernaja fizika. 8, 23-40 [in Russian].

8. Chernogor L. F. (2018). Magnetospheric effects during the approach of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 58 (2), 252-265.
https://doi.org/10.1134/S0016793218020044

9. Chernogor L. F. (2021). Kamchatka meteoroid effects in the lithosphere - atmosphere - ionosphere - magnetosphere system. 13th Int. School-Conf. «Pro¬blems of Geocosmos». Abstracts. (March 24-27, 2021, St. Petersburg, Russia), 400-410 [In Russian].

10. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2021). Ionospheric effects of the Kamchatka meteoroid: results of multiple-path oblique incidence. 13th Int. School-Conf. «Problems of Geocosmos». Abstrs. (March 24-27, 2021, St. Petersburg, Russia), 380-388 [In Russian].

11. Chernogor L. F. (2022). Kamchatka meteoroid effects in the geomagnetic field. Kinematics and Phys. Celestial Bodies. 38 (1), 25-48.
https://doi.org/10.3103/S0884591322010032

12. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2020). Parameters of the infrasonic signal generated by the Kamchatka meteoroid. Kinematics and Phys. Celestial Bodies. 36 (5), 222-237.
https://doi.org/10.3103/S0884591320050037

13. Borovi…ka J., Setv k M., Roesli H., Kerkmann J. K. (2020). Satellite observation of the dust trail of a major bolide event over the Bering Sea on December 18, 2018. Astron. and Astrophys. 644, A58.
https://doi.org/10.1051/0004-6361/202039393

14. Brown P. G., Assink J. D., Astiz L., Blaauw R., Boslough M. B., Borovi…ka J., Brachet N., Brown D., Campbell-Brown M., Ceranna L., Cooke W., De Groot- Hedlin C., Drob D. P., Edwards W., Evers L. G., Garces M., Gill J., Hedlin M., Kingery A., Laske G., Le Pichon A., Mialle P., Moser D. E., Saffer A., Silber E., Smets P., Spalding R. E., Spurnv P., Tagliaferri E., Uren D., Weryk R. J., Whitaker R., Krzeminski Z. (2013). 500-kilotone airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature. 503 (7475). 238-241.
https://doi.org/10.1038/nature12741

15. Center for Near Earth Object Studies. (2021)

URL: https://cneos.jpl.nasa.gov/fireballs/ Access Date: 11.07.2021.

16. Chernogor L. F. (2020). Physical effects of the Kamchatka meteoroid. Astron. and Space Phys. in the Kyiv Univ. Book of Abstrs. May 27-29, 2020. Kyiv, Ukraine. 70-71.

17. Chernogor L. F. (2021). Litosphere - atmosphere - ionosphere - magnetosphere effects of the Kamchatka meteoroid. 13th Int. Conf. and School «Problems of Geocosmos». March 24-27, 2021. St. Petersburg, St. Petersburg University. Section STP. Solar-Terrestrial physics. STP004.
https://geo.phys.spbu.ru/geocosmos/2020/data/data/htmls/STP/STP004.html

18. Chernogor L. F. (2022). Kamchatka meteoroid effects in the lithosphere - atmosphere - ionosphere - magnetosphere system. In: Kosterov A., Bobrov N., Gordeev E., Kulakov E., Lyskova E., Mironova I. (eds). Probl. Geocosmos-2020. Springer Proc. in Earth and Environ. Sci. Springer, Cham. 365-377.
https://doi.org/10.1007/978-3-030-91467-7_27

19. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V., Zheng Yu. (2021). Ionospheric effects of the Kamchatka meteoroid. 13th Int. Conf. and School «Problems of Geocosmos». March 24-27, 2021. St. Petersburg, St. Petersburg University. Section STP. Solar-Terrestrial physics. STP002.

https://geo.phys.spbu.ru/geocosmos/2020/data/data/htmls/STP/STP002.html

20. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2020). Infrasonic effects of the Kamchatka meteoroid. Astron. and Space Phys. in the Kyiv Univ. Book of Abstrs. May 27-29, 2020. Kyiv, Ukraine. 71-72.

21. Gavrilov B. G., Pilipenko V. A., Poklad Y. V., Ryakhovsky I. A. (2020). Geomagnetic effect of the Bering Sea meteoroid. Russ. J. Earth Sci. 20 (6), ES6009.
https://doi.org/10.2205/2020ES000748

22. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Shulga S. N., Zheng Y. (2020). Ionospheric effects of the Kamchatka meteoroid: Results from multipath oblique sounding. J. Atmos. and Solar-Terr. Phys. 207, 105336.
https://doi.org/10.1016/j.jastp.2020.105336

23. Luo Y., Yao Y., Shan L. (2020). Analysis of ionospheric disturbances caused by the 2018 Bering Sea meteor explosion based on GPS observations. Sensors. 20 (11), 3201. DOI: 10.3390/s20113201
https://doi.org/10.3390/s20113201

24. Pilger C., Gaebler P., Hupe P., Ott T., Drolshagen E. (2020). Global monitoring and characterization of infrasound signatures by large fireballs. Atmosphere. 11(1), 83.
https://doi.org/10.3390/atmos11010083

25. Popova O. P. (2021). Chelyabinsk meteorite. Oxford Res. Encycl. Planet. Sci.
https://doi.org/10.1093/acrefore/9780190647926.013.22

26. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khai¬brakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. (2013). Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 342. 1069-1073.
https://doi.org/10.1126/science.1242642

27. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khai¬brakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. (2013). Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. 146.
https://doi.org/10.1126/science.1242642

28. Redd N. T. (2019). Fireball over the Bering Sea. Eos. 100.
https://doi.org/10.1029/2019EO119503