A possible source and mechanism for the origin of the hot component in the Kuiper belt

1Kazantsev, AM
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(3):53-66
https://doi.org/10.15407/kfnt2023.03.053
Language: Ukrainian
Abstract: 

It is proposed a mechanism that is different from the existing ones for the origin of the Kuiper belt (KB) bodies. The distributions of the orbits of the most of bodies of the “hot” component in the KB were analyzed. The shapes of the distributions indicate that all those bodies could have arisen as a result of the destruction of one massive body (the Kuiper belt planet, KBP). The separation velocities of the fragments were determined mainly by the linear velocities of the parts of the KBP at different depths and latitudes. The maximum separation velocity corresponded to the linear velocity on the surface of the KBP near the equator and could be 2.4 km/s. The size of the KBP could be slightly smaller or larger than the size of the Earth. The spin period could be about 4 hours. The spin axis of the KBP was tilted at a little angle to the ecliptic plane and at the moment of the destruction it was directed towards the Sun. This mechanism agrees well with existing observational data. It can explain a noticeable number of bodies in the KB with satellites, as well as the existing dependence of the bulk density of the bodies on the size. According to this mechanism, the spin axes of the fragments (primarily large ones) should be tilted at little angles to the ecliptic plane. The spin axes of the dwarf planets Pluto and Haumea are inclined to the ecliptic plane at angles of 23° and 10° respectively. Obtaining data on the spin pole orientation of other large KB bodies in the future may become the final confirmation of the proposed mechanism.

Keywords: dwarf planet, Kuiper belt
References: 

1. Archinal B. A., A'Hearn M. F., Bowell E., Conrad A., Consolmagno G. J., Courtin R., Fukushima T., Hestroffer D., Hilton J. L., Krasinsky G. A., Neumann G., Oberst J., Seidelmann P. K., Stooke P., Tholen D. J., Thomas P. C., Williams I. P. (2011) Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celest. Mechan. Dyn. Astron. 109. 101-135.
https://doi.org/10.1007/s10569-010-9320-4

2. Batygin K., Brown M. E., Fraser W. C. (2011) Retention of a primordial cold classical Kuiper belt in an instability-driven model of Solar system formation. Astrophys. J. 738. id. A13. 8.
https://doi.org/10.1088/0004-637X/738/1/13

3. Batygin K., Brown M. E. (2021) Injection of inner Oort cloud objects into the distant Kuiper belt by planet Nine. Astrophys. J. Let. 910. id. A20. 9.
https://doi.org/10.3847/2041-8213/abee1f

4. Brasser R., Schwamb M. E. (2015) Re-assessing the formation of the inner Oort cloud in an embedded 1 star cluster - II. Probing the inner edge. Mon. Notic. Roy. Astron. Soc. 446. 4. 3788-3796.
https://doi.org/10.1093/mnras/stu2374

5. Brown M. E., Butler B. J. (2017) The density of mid-sized Kuiper belt objects from alma thermal observations. Astron. J. 154. id. A19. 7.
https://doi.org/10.3847/1538-3881/aa6346

6. Fornasier S., Lellouch E., Mller T., Santos-Sanz P., Panuzzo P., Kiss C., Lim T., Mommert M., Bockele-Morvan D., Vilenius E., Stansberry J., Tozzi G. P., Mottola S., Delsanti A., Crovisier J., Duffard R., Henry F., Lacerda P., Barucci A., Gicquel A. (2013) TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70-500 m. Astron. and Astrophys. 555. id. A15. 22.
https://doi.org/10.1051/0004-6361/201321329

7. Kazantsev A. M. (2002) A simple method for numerical calculations of the evolution of orbits of near-Earth asteroids. Sol. Sys. Res. 36. 43-49.

8. Kondratyev B. P., Kornouhov V. S. (2018) Determination of the body of the dwarf planet Haumea from observations of a stellar occultation and photometry data. Mon. Notic. Roy. Astron. Soc. 478. 3. 3159-3176.
https://doi.org/10.1093/mnras/sty1321

9. Kovalenko I. D., Doressoundiram A., Lellouch E., Vilenius E., Mller T., Stansberry J. (2017) "TNOs are Cool": A survey of the trans-Neptunian region XIII. Statistical analysis of multiple trans-Neptunian objects observed with Herschel Space Observatory. Astron. and Astrophys. 608. id. A19. 8.
https://doi.org/10.1051/0004-6361/201730588

10. Lellouch E., Santos-Sanz P., Lacerda P., Mommert M., Duffard R., Ortiz J. L., Mller T. G., Fornasier S., Stansberry J., Kiss C., Vilenius E., Mueller M., Peixinho N., Moreno R., Groussin O., Delsanti A., Harris A. W. (2013) "TNOs are Cool": A survey of the trans-Neptunian region IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations. Astron. and Astrophys. 557. id. A60. 19.
https://doi.org/10.1051/0004-6361/201322047

11. Levison H. F., Morbidelli A., Van Laerhoven C., Gomes R., Tsiganis K. (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus. 196. 258-273.
https://doi.org/10.1016/j.icarus.2007.11.035

12. Lykawka P. S., Mukai T. (2007) Origin of scattered disk resonant TNOs: Evidence for an ancient excited Kuiper belt of 50 AU radius. Icarus. 186. 2. 331-341.
https://doi.org/10.1016/j.icarus.2006.10.002

13. Morbidelli A., Levison H. F. (2004) Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 CR 105 and 2003 VB12 (Sedna). Astron. J. 128. 5. 2564-2576.
https://doi.org/10.1086/424617

14. Nimmo F., Umurhan O., Lisse C. M., Bierson C. J., Lauer T. R., Buie M. W., Throop H. B., Kammer J. A., Roberts J. H., McKinnon W. B., Zangari A. M., Moore J. M., Stern S. A., Young L. A., Weaver H. A., Olkin C. B., Ennico K., the New Horizons GGI team. (2017) Mean radius and shape of Pluto and Charon from New Horizons images. Icarus. 287. 12-29.
https://doi.org/10.1016/j.icarus.2016.06.027

15. Ortiz J. L., Santos-Sanz P., Sicardy B., Benedetti-Rossi G., Brard D., Morales N., Duffard R., Braga-Ribas F., Hopp U., Ries C., Nascimbeni V., Marzari F., Grana¬ta V., Pribulla T., Komk R., Hornoch K., Pravec P., Bacci P., Maestripieri M., Nerli L., et al. (2017) The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature. 550. 7675. 219-223.
https://doi.org/10.1038/nature24051

16. Vilenius E., Kiss C., Mller T., Mommert M., Santos-Sanz P., Pl A., Stansberry J., Mueller M., Peixinho N., Lellouch E., Ortiz J. L., Peixinho N., Thirouin A., Ly¬kaw¬ka P. S., Horner J., Duffard R., Fornasier S., Delsanti A. (2014) "TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. Astron. and Astrophys. 564. id. A35. 18.
https://doi.org/10.1051/0004-6361/201322416